o~
U.S. Department of Transportation
Federal Aviation Administration

DOT/FAA/CT-88/10

'HANDBOOK - VOLUME II
DIGITAL SYSTEMS VALIDATION

CHAPTER 20
ARTIFICIAL INTELLIGENCE WITH
APPLICATIONS FOR AIRCRAFT

FEDERAL AVIATION ADMINISTRATION
TECHNICAL CENTER
ATLANTIC CITY INTERNATIONAL AIRPORT, NEW JERSEY 08405

nt ras besn approved

NOTICE

This document is disseminated under the sponsorship of the U.S. Department of
Transportation in the interest of information exchange. The United States Government
assumes no liability for the contents or use thereof. The United States Government does not
endorse products or manufacturers. Trade or manufacturer’s names appear herein solely
because they are considered essential to the object of this report.

Technical Report Documentation Page

1. Report No. 2. Government Accession No. 3. Recipient’s Catalog No.

DOT/FAA/CT-88/10

4. Title and Subtitle 5. Report Date
HANDBOOK-VOLUME II
DIGITAL SYSTEMS VALIDATION CHAPTER 20 July 1994
ARTIFICIAL INTELLIGENCE WITH APPLICATIONS FOR o patommg Orammeaton Core
AIRCRAFT

7. Authorts) 8. Performing Organization Report No.

L. Harrison, P. Saunders, J. Janowitz

9. Performing Organization Neme and Address 10. Work Unit No. {TRAIS}

Galaxy Scientific Corporation

2500 EngllSh Creek Avenue 11. Contract or Grant No.

Building 11 DTFAO3-89-C-00043
Pleasantville, NJ 08232

12. Sponsoring Agency Name and Address 13. Type of Report and Period Covered
U.S. Department of Transportation Tutorial
Federal Aviation Administration Handbook Chapter 20

Technical Center
Atlantic City International Airport, NJ 08405

14. Sponsornng Agency Code

ACD-230

15. Suppiementary Notes

Pete Saraceni, FAA Technical Center, Program Manager, (609) 485-5577
(Note: This tutorial is a condensed version of FAA Technical Center tinal report DOT/FAA/CT-94/41.)

16. Abstract

This chapter provides an overview of Artificial Intelligence (Al) technology, one of the more complex applications of digital
systems. This chapter examines Al-based technology, focusing on three fields: neural networks, fuzzy logic, and Expert
Systems. This chapter provides the reader with the background and a basic understanding of the fundamentals of these fields.
Another section examines aspects of the Al development environment, including languages, tools, and Al-based hardware
components.

Some of the proposed aviation-related applications for both civil and military aircraft, including pilot assistants and diagnostic
aids, are surveyed. Additionally, certification issues, including regulations, guidelines, and verification and validation
techniques are examined. Human factors issues relating to the use of this technology are identified and reviewed. In addition,
this chapter identifies safety issues and concerns over the use of this technology in airborne systems.

17. Key Words 18. Distrnibution Statement

Artificial Intelligence, avionics, blackboard system, Document is available to the public through the National
certification, chaining, database, development tool, expert Technical Information Service (NTIS), Springfield. Virginia
system, fuzzy logic, guidelines, human factors, inference 22161

engine, knowledge base, learning, neural network, rule base,
search technique, shell, validation, verification.

19. Security Classif. {of this report) 20. Security Classif. {of this page} 21. No. of Pages 22. Price

Unclassified Unclassified 135

Form DOT F1700.7 (8-72) Reproduction of completed page authorized

TABLE OF CONTENTS

Chapter Page
EXECUTIVE SUMMARY 20—xi
1 INTRODUCTION 20-1
1.1 Defining Artificial Intelligence 20-1
1.2 Artificial Intelligence and Aviation Applications 20-1
2 ARTIFICIAL INTELLIGENCE OVERVIEW 20-3
2.1 History 20-5
2.2 Expert Systems 20-6
2.2.1 Expert System Architecture 20-7
2.2.2 Expert System Implementation 20-8
2.2.3 Explanation of Reasoning 20-9
2.2.4 Knowledge Representation 20-9
2.2.5 Updating the Knowledge Base 20-17
2.2.6 Chaining 20-17
2.2.7 Knowledge Acquisition 20-18
2.2.8 Applications 20-19
2.2.9 Heuristic Reasoning 20-20
2.2.10 Searching 20-20
2.2.11 Expert System Drawbacks 20-21
2.2.12 Future of Expert Systems 20-23
2.2.13 Blackboard Systems 20-23
2.3 Fuzzy Logic 20-26
2.3.1 The Basic Theory 20-26
2.3.2 Crisp Logic 20-28
2.3.3 Fuzzy Control _ , 20-29
2.3.4 Control Systems Accesion For \ 20-31
2.3.5 Probability CRA& N 20-33
2.3.6 Parallel Processing TAR 0 20-33
2.3.7 Hardware auncad 0 20-33
2.3.8 Designing a Fuzzy System . ~ation 20-33
2.3.9 Fuzzy Logic Advantages [20-34
2.3.10 Fuzzy Logic Disadvantages zqw 20-35
2.3.11 Applications L 20-35
2.3.12 Future of Fuzzy Logic L

20-36

2.4 Neural Networks 20-36
2.4.1 Learning 20-37
2.4.2 Transfer Functions 20-38
2.4.3 Construction 20-38

20-iii

TABLE OF CONTENTS

(Continued)

Chapter Page
2.4.4 Designing a System 20-40

2.4.5 Applications 20-41

2.4.6 Future of Neural Networks 20-41

2.5 Integrated AI Systems 20-41
2.5.1 Fuzzy Logic Integrated with Neural Networks 20-41

2.5.2 Expert Systems Integrated with Neural Networks 20-42

2.5.3 Expert Systems Integrated with Fuzzy Logic 20-43

3 ARTIFICIAL INTELLIGENCE AND EXPERT SYSTEM DEVELOPMENT 20-45
3.1 Software for Artificial Intelligence Applications 20-45
3.1.1 List Processof 20-46

3.1.2 Programming in Logic 20-46

3.1.3 Tools for the Expert System 20-46

3.1.4 Fuzzy Languages for Development 20-46

3.1.5 Other Languages and Tools 20-47

3.2 Artificial Intelligence and Expert Systems Hardware 20-48
3.2.1 Neural Processors 20-49

3.2.2 Design Considerations for Fuzzy Logic 20-51

3.3 Artificial Intelligence Development Systems and Tools 20-52
3.3.1 Fuzzy Development Systems 20-52

3.3.2 Fuzzy Logic for Digital Signal Processors 20-54

3.3.3 Neural Network Development Tools 20-54

3.3.4 Neural Network and Fuzzy Logic Combined System 20-55

4 ARTIFICIAL INTELLIGENCE AND EXPERT SYSTEM APPLICATIONS 20-57
4.1 Design Considerations for Avionic Applications 20-57
4.1.1 Architecture Considerations 20-57

4.1.2 Timing Considerations 20-57

4.2 Flight Management Expert System 20-58
4.3 Navigation Systems 20-59
4.4 Decision Support Systems 20-59
4.4.1 Cockpit Assistant System 20-59

4.4.2 Diverter System ’ 20-60

20-iv

TABLE OF CONTENTS
(Continued)

Chapter

4.4.3 Flight-Plan Interactive Negotiation and
Decision—Aiding System

4.4.4 Pilot's Associate Program

4.4.5 Rotorcraft Pilot's Associate Program

4.5 1Intelligent Monitoring and Diagnostic Systems

4.5.1 Rotorcraft Transmission Health Monitoring System
4.5.2 Technical Expert Aircraft Maintenance System

5 CERTIFICATION CONSIDERATIONS FOR ARTIFICIAL INTELLIGENCE

5.1 Certification and Federal Aviation Regulations
5.2 Certification Guidelines

5.2.1 Hardware Guidelines
5.2.2 Software Guidelines
5.2.3 Software Guidelines and Artificial Intelligence

Artificial Intelligence Standards
Conventional Software Verification and Validation

v
&~ w

5.4.1 Verification and Validation
5.4.2 Verification and Validation Testing Phases

5.5 Expert System Software Verification and Validation

5.5.1 Contrasting Expert Systems and Conventional
Software

5.5.2 Specification and Development Differences
5.5.3 Implementation Differences
5.5.4 Verification and Validation Techniques for Expert
Systems
5.5.5 Supportability Issues for Expert Systems
5.5.6 Configuration Management Issues for Expert Systems
5.5.7 Reliability Requirements
5.5.8 Testability Issues for Expert Systems
6 HUMAN FACTORS AND ARTIFICIAL INTELLIGENCE

6.1 Expert System Development Stages

6.2 National Plan and Artificial Intelligence

6.3 Keeping the Human as a Factor

6.4 Automation and Other Human Factors Concerns

20—v

20-61
20-63
20-63

20-65

20-65
20-66

20-69

20-69
20-70

20-70
20-71
20-72

20-73
20-73

20-73
20-77

20-78

20-79
20-83
20-84

20-85
20-90
20-90
20-91
20-92

20-93

20-93
20-94
20-94
20-96

TABLE OF CONTENTS
(Continued)

Chapter

7 CONCLUSION

Learning Systems

Software Level Determination

Enhancing Safety

Hardware and Software Failures
Ground—-Based Avionics?

Verification and Validation Issues

Tool Qualification

Design Guidance

Human Factors Issues for Expert Systems

R N B N B
W oo~ uw &N

BIBLIOGRAPHY

GLOSSARY

ACRONYMS AND ABBREVIATIONS

INDEX

20-vi

LIST OF ILLUSTRATIONS

Figure

2

2

.2-1

.2-2

.2-3

.2-4

.2-5

.3-1

.3-2

.3-3

.3-4

L4-1

.42

.2-1

A=

L4-2

.1-1

EXPERT SYSTEM ARCHITECTURE

SEMANTIC NETWORK STRUCTURE

BREADTH FIRST SEARCH TREE

DEPTH FIRST SEARCH TREE

BLACKBOARD SYSTEM ARCHITECTURE

FUZZY MEMBERSHIP SETS

CRISP VERSUS FUZZY LOGIC

OBTAINING THE LOGICAL PRODUCT

THE LOGICAL SUM

NEURAL NETWORK

BIOLOGICAL AND ARTIFICIAL NEURONS

OPTICAL NEURAL COMPUTING INTEGRATED CIRCUIT
DIVERSION PROPOSAL GENERATION

ROTORCRAFT PILOT'’S ASSOCIATE DEMONSTRATOR CONCEPT

IMPROVED HUMAN PERFORMANCE GENERATOR

20-vii/viii

20-22

20-24

20-27

20-28

20-30

20-32

20-39

20-40

20-50

20-62

20-64

20-95

LIST OF TABLES

Table Page
2.2-1 FRAME STRUCTURE 20~-16
9 4-1 FUTURE EXPECTATIONS FOR NEURAL NETWORKS 20-42
3.1-1 COMPARISON OF EXPERT SYSTEM AND PROGRAMMING LANGUAGE DEVELOPMENT

METHODS 20-47
5. 5-1 EXPERT SYSTEM AND CONVENTIONAL SOFTWARE DIFFERENCE SUMMARY 20-81
5.5-3 EXPERT SYSTEM VERIFICATION AND VALIDATION TECHNIQUES 20-86

20-ix/x

EXECUTIVE SUMMARY

This tutorial was initiated by the Federal Aviation Administration Technical
Center's Directorate for Aircraft Safety, Flight Safety Research Branch. The
purpose of the tutorial is to provide an overview of Artificial Intelligence (AI)
technology, highlighting selected fields. This tutorial is based on the
technical report DOT/FAA/CT-94/41 with the same title.

One of the more complex applications of digital systems is that of AI. This
report examines Al-based technology, the development environment, and proposed
aviation-related applications of this technology. In addition, the report
identifies safety issues and concerns over the use of this technology in airborne
systems. There are seven sections of the report:

. Section 1 - Introduction

. Section 2 - Artificial Intelligence Overview

. Section 3 - Artificial Intelligence and Expert System Development

. Section 4 - Artificial Intelligence and Expert System Applications

. Section 5 - Certification Considerations for Artificial Intelligence
. Section 6 - Human Factors and Artificial Intelligence

. Section 7 - Conclusion

While AI-based technology may never be able to replace genuine intelligence, it
can provide users with many benefits. Developing human-centered automation and
designing advanced technology that will capitalize on the relative strengths of
humans and machines are key to the success and usefulness of AI. For example,
Expert Systems (ESs) can consistently provide expert advice in a timely manner.
ESs are not influenced by factors which impair human decision making, such as
stress or emotions.

Neural Network systems are helpful for applications such as pattern recognition.
Recognizing pre—failure signatures in airborne machinery is an excellent
application for this particular field of AI. Fuzzy logic systems are useful for
applications that normally require human intuition, are difficult to control with
conventional techniques, or are difficult to model.

One of the primary activities that requires addressing by developers and
certification specialists concerns Verification and Validation (V&V) methods for
Al-based systems. Numerous V&V techniques that have been successfully applied
to ESs are identified in this tutorial. Identifying a set of tests that can be
demonstrated to satisfy safety requirements will be a challenge.

AI technology is not efficient at solving all types of problems. For a number
of applications, it can, however, assist in managing problem complexity. AI-
based systems for commercial aircraft are being researched and tested.
Ultimately, such systems can offer economic advantages and contribute to flight
safety.

20-xi/xii

1. INTRODUCTION

1.1 Defining Artificial Intelligence

Because of ongoing debate over what comprises Artificial Intelligence (AI)
technology and what the research goals are, it is difficult to provide an
unequivocal definition of AI. Should some fields of AI technology, such as
Expert Systems (ESs) or fuzzy logic, be considered simply another software
application? Should a system without learning capability be considered an Al-
based system, as some believe? Others contend that due to fundamental
differences between computers and people, the ultimate goal of the autonomous
"thinking machine" will never be realized. Human qualities, such as intuition,
can not be reproduced in the confines of silicon and software (Dreyfus and
Dreyfus 1986).

Debate over these issues will continue. Numerous definitions of what comprises
AI technology exist. However, for the purpose of this report, AI is defined as
the subfield of computer science that attempts to use computers to emulate the
way humans think and reason when solving problems. This agrees with Wickens
(1992):

The study of AI is devoted to developing computer programs that will
mimic the product of intelligent human problem solving, perception,
and thought.

Defined in this manner, AI includes systems that are capable of "learning," as
well as those that have static rules and databases. The part of the definition
that is stressed, and that most agree with, is the mimicking, or emulating, of
human techniques.

In this report, particular emphasis is placed on three fields of AI technology:
ESs, fuzzy logic, and Neural Networks (NNs). Aviation—- and avionics-related
applications, or proposed applications, have been numerous for these disciplines,
but especially for the ES. Therefore, sections 4, on AI applications, and 5, on
certification issues, focus on these fields of AI technology.

1.2 Artificial Intelligence and Aviation Applications
AI technology has existed for a number of years. During the early years, the
promises made concerning this technology did not match the products delivered.
With this in mind, Bouchard (1991) said:

The user community has been stung with high development costs and

false expectations, although that is changing with respect to expert
systems.

20-1

Some of the early applications of Al-based technology have included image and
speech recognition systems, natural language systems, and handwriting analysis.
While research in these fields continues, Al-based technology is being used in
a number of other applications. Al-based systems are now being used for control
and monitoring systems, financial analysis, medical prognosis, manufacturing,
training, sorting through large amounts of data in databases, and scheduling.
A great amount of research is being performed and sponsored by the National
Aeronautics and Space Administration (NASA) for space applications and for
potential flightdeck applications for both the commercial and military
communities. Among the Department of Defense (DOD) community, this technology
is referred to as "Machine Intelligence." AlI-based systems are also being used
by the Nuclear Power Industry (Naser 1991). Some of the benefits of such systems
include consistency of reasoning in stressful situations, reduction in time to
perform certain tasks, and prevention of equipment failures using predictive
diagnostics.

AI-based products that save the user time and money and outperform conventional
software-based systems are currently being manufactured. According to Curran
(1992), it is likely that AI and ES technology will be used in the near future
in at least two avionic areas. For the aviation community, the possible benefits
of using AI-based systems would include the following:

. Optimizing the use of airspace

. Reducing the cost of flying

. Meeting Air Traffic Control (ATC) requirements

. Aiding the decision making process of the flight crew
. Aiding maintenance activity

. Assisting data management

Al-based pilot aid systems are being designed by both military and commercial
manufacturers. In Germany, the Cockpit Assistant System (CASSY), an Al-based
pilot aid system, is undergoing flight testing, with the expectation that it will
be operational as early as 1997 (Nordwall 1992). This system may use Al-based
technologies, such as NNs, ESs, and fuzzy logic (Prevot, Onken, and Dudek 1991).
Certification authorities in Europe and the United States should be cognizant and
concerned over such activity. Above all, they should be prepared for the
presentation of such an Al-based system for certification by an avionics or
airframe manufacturer.

AI is a broad discipline and this report is limited in scope and depth of
coverage. For further information, the reader is urged to make use of the
bibliography located after section 7.

20-2

2. ARTIFICIAL INTELLIGENCE OVERVIEW

As stated in the introduction, AI refers to the subfield of computer science that
studies the process of programming machines to perform in a manner resembling
human behavior. It is the computer—based solution to complex problems using the

application of processes that are analogous to the human reasoning process
(Rolston 1988).

Many disciplines contribute ideas to the field of AI. Basic ideas in fields such
as mathematics, psychology, linguistics, philosophy, computer science, and
engineering find frequent application in AI. Intelligence requires many
strengths and many of the problems faced in established disciplines intersect the
natural concerns of Al-related problems.

Two of the objectives of AI are to make computers more useful and to understand
the principles that make intelligence possible in living beings. As the world
grows more complex, Al-based computers can assist with many tasks. Resources
such as energy, food, and brain power must be used as wisely as possible. High
quality help from computers in ordinary computing, as well as computing that
exhibits intelligence, can assist in this area.

The ultimate goal of AI research is to build a "person." This person will have
various modules that will be integrated to produce the final system. These
modules involve a number of different applications relevant to Al research. The
input to the system includes vision and language interfaces with the external
domain. The output of the system entails robotics, speech, and screen
interaction with the external domain. The internal systems include deduction,
search, planning, explanation, and learning (Charniak and McDermott 1985) .

Intelligence requires more than the ability to reason; it also requires a great
deal of knowledge about the world. The knowledge about the world needs to be
encoded in a way that the computer system will be able to interpret. There are
some properties inherent in knowledge that cause difficulty for Al-related
purposes. Knowledge is difficult to characterize accurately; it is constantly
changing; it is virtually unbounded; and it generally needs to be organized
according to the way it will be used (Rich and Knight 1991).

Robotics is a significant subarea of AI. There are many possible uses for
robots. Tasks such as welding, general house cleaning, construction, and making
deliveries would be appropriate for a robot. Robotics is a complex area
involving aspects other than AI, such as mechanical and electrical design.
Successful implementation of a fully operational, independent robot has not been
achieved. Tasks that are performed almost unconsciously by humans require many
of the same abilities used in solving more intellectually demanding problems.
Complex robot control problems require planning at high levels of abstraction,
ignoring details, and then planning at lower and lower levels where details

20-3

become important. Research into the area of robotics has helped to develop many
other Al areas. '

Interfacing with the user requires capabilities such as voice and visual
interface. Further investigation into these areas is required for them to be
useful to an Al system. An area of AI that requires more research and
development is natural language comprehension. This is the ability of an Al
system to interpret written or spoken words. Human communication employs complex
and little understood processes almost effortlessly. The primary use of language
is to transmit a piece of mental structure from one brain to another under
circumstances in which each brain possesses large, highly similar surrounding
mental structures that serve as a common context. A computer system capable of
understanding a message in natural language would require both the contextual
knowledge and the processes for making the inferences assumed by the message
generator (Nilsson 1980).

Common sense reasoning involves reasoning about physical objects and their
relationships to each other, as well as reasoning about actions and their
consequences. For example, an object can only be in one place at a time, and if
an object is dropped it will fall to the floor and may break. This reasoning is
difficult to capture because it is taken for granted. People do not need to
think about actions related to common sense reasoning; they are virtually
instinctive. At this point in AI development, the domains that require only
specialized expertise without the assistance of common sense knowledge are the
Al systems that are flourishing as useful systems.

Another area of AI research is intelligent retrieval from databases. Database
systems are computer systems that store a large body of facts about some subject
in such a way that the data can be used to answer questions about that subject.
Many techniques have been developed to enable the efficient representation,
storage, and retrieval of large numbers of facts. These techniques become
related to AI when the task requires retrieving answers that entail deductive
reasoning from the facts in the database. The designer of an intelligent
database retrieval system is faced with several problems, including understanding
queries that are stated in natural language, deducing answers from stored facts,
and acquiring and utilizing common knowledge.

Expert consulting systems are systems that provide users with expert conclusions
about specialized subject areas. These systems include medical diagnostic
systems, which, given the symptoms of the patient, may suggest tests to perform
and, possibly, speculate what the disease may be (Charniak and McDermott 1985).
The key problem in developing expert consulting systems is how to represent and
use the knowledge that experts possess and use. This knowledge is often
imprecise or uncertain.

The task of a computer generating a computer program is related to both theorem
proving and robotics. The system takes in a description of what the program is
supposed to do and then writes the code. Program verification and debugging are
a few of the capabilities that such a system must achieve.

Specifying optimal schedules and combinations is another class of problems that
can be solved using AI techniques. The effort is in making the time-versus-—

20-4

problem-size curve grow as slowly as possible. Several methods have been
developed for delaying and moderating the inevitable combinatorial explosion.
Knowledge about the problem domain is the key to more efficient solution methods.

Research is being done in the area of a computer’'s ability to perceive
surroundings. It would be useful for computers to be capable of understanding
their surroundings by hearing and seeing them. Understanding surroundings
requires a large database of knowledge about the things being perceived. The
ultimate goal is to represent the scene by a natural language description. The
process of hypothesis formation requires a large amount of knowledge about the
expected scenes. For example, when a robot enters a room, there will be some
information in the AI system about what normally can be expected to be found in
a room, such as windows, doors, and furniture.

A task that may be appropriate for an AI system is proving or disproving a
theorem. This requires intuitive skills, such as guessing which theorems should
be proved first to prove the main theorem and the ability to make deductions from
hypotheses. There are many informal tasks that can be formalized as theorem
proving problems. Therefore, this is an important area in the study of Al
methods (Nilsson 1980).

There are Al programs that can perform a variety of tasks, such as solving
mathematical problems, predicting the presence of mineral deposits, verifying the
designs of electronic components, and using television cameras to see the world
and identify what is there. AI programs are also capable of playing backgammon,
controlling manufacturing processes, diagnosing computer faults, designing
computers, underwriting insurance, playing chess, and much more (Charniak and
McDermott 1985).

Three subfields of AI are examined in detail in the following sections. They are
ESs, fuzzy logic, and NNs. ESs are programmed to use the knowledge of experts
applied to specific task areas. ESs can achieve high levels of system
performance in limited domains. Fuzzy logic is used to model systems where
information may be imprecise or incomplete. Fuzzy logic is useful for systems
that normally require human intuition, are difficult to control with conventional
techniques, or are difficult to model. NNs are a simplified model of the brain's
structure. They are used to solve problems that require input to output data

mapping.
2.1 History

Beginning in the 1960s, there was much interest in developing intelligent
systems. Many promises were made regarding the future capabilities of computers.
However, by the early 1970s, most of the promises that were made had not been
met. AI research lost most of its funding and was regarded as an eccentric
branch of computer science. People became skeptical of Al because of unrealistic
claims and expectations. Interest and activity in the area of AI research grew
again, beginning in the late 1970s and peaking in the mid—-1980s. Fuzzy logic was
developed in 1965 as a method of capturing human expertise and incorporating it
into ESs. There is still a significant amount of research being done in the
field today.

Initially, the aim of AI was to develop universal models for general problem
solving. However, soon it became apparent that this would rule out too many
specific types of problems (Adeli 1990). Compared to other branches of
engineering and computer science, AI is a very young field. Scientists and
engineers are still struggling to find its rightful place in the scientific
world. Although AI may not live up to early expectations, it can still benefit
many applications.

2.2 Expert Systems

An ES is a computer—based system designed to emulate the problem solving behavior
of a human who is an expert in a narrow domain. ESs are based on Al techniques
that use knowledge about a particular domain and reasoning techniques to perform
activities normally done by human experts. They are created by first capturing
the domain expert’'s knowledge and then translating and storing this knowledge in
a computer readable format, discussed in more detail below. ESs emulate the
reasoning process of a human expert, sometimes reasoning from imprecise and
uncertain information. They solve real-world, complex problems, using a computer
model of expert human reasoning. These systems provide a way to make the
knowledge of experts available to many.

Research in ESs began in the middle 1960s. There is an extensive body of
knowledge covering a number of different approaches to ESs. Research and
development for these systems is continuing at a rapid pace. There are many ESs,
either in use or under development, for providing assistance in diverse
applications such as:

. Performance monitoring and diagnosis of telecommunication systems
. Soil analysis

. Decision aiding for military maneuvers

. Data quality assurance in the Consumer Price Index

. Computer hardware configuration for large computer systems

A number of other applications related to avionics are examined in section 4.

Research in the area of languages to support symbolic reasoning has been done in
conjunction with AI and ES research. LISt Processor (LISP), which is currently
the most widely used AI language, was developed in 1958. Another widely used AI
language is PROLOG (PROgramming in LOGic). Additional languages used in Al
system development can be found in section 3.

Although there are other methods of encoding knowledge, ESs generally encode
knowledge through a set of rules that are in the form of IF THEN statements. ESs
compute a sequence of strings representing the steps in the solution to a
problem. To simulate the human reasoning process, ESs apply specific knowledge
and inferences. They are able to deal with a wide range of problems, as would
a human expert.

High performance of ESs can only be achieved on powerful computing platforms
because a great number of rules are needed in the knowledge base.

20-6

2.2.1 Expert System Architecture

The main sections of an ES are a knowledge base, a database, and an inference
mechanism. An interface, whether human or with another system, must also be
included. Figure 2.2-1 shows the ES architecture. The database contains the
current state of the ES as it works toward a solution. The knowledge base
contains domain knowledge which is applied to the problem at hand. Information
in the knowledge base may be in the form of statements, such as the (attribute)
of (object) is (value), or it may be in the form of an IF THEN statement (rule).
Attributes are terms such as age, distance, or temperature, and they may not be
known precisely (Togai and Watanabe 1992). The inference mechanism, or inference
engine, controls the use of the knowledge base and database in solving the
problem.

User/Other System

Expert System Interface

I

Expert System

Knowledge Base Inference Engine Database

FIGURE 2.2-1. EXPERT SYSTEM ARCHITECTURE

2.2.1.1 Knowledge Base

The knowledge base contains codified knowledge about a specific domain. It is
a collection of facts and heuristics. The power of an ES depends more on the
quality of its knowledge base than on the nature of its inference engine. Large
knowledge bases can be difficult to develop and maintain.

2.2.1.2 Database

The database contains an organized collection of specific data concerned with the
problem to be solved. It represents what the computer believes to be either a
partial or full solution to the problem. The inference engine acts as a
gatekeeper between the database and the program using it. The inference engine
is responsible for adding and deleting beliefs and performing certain classes of
inference, such as adding facts or handling requests for information (Charniak
and McDermott 1985).

2.2.1.3 Inference Engine
The function of the inference engine is to use knowledge in the knowledge base,
along with acquired knowledge about the specific problem, to form an expert

solution. To achieve defined goals, the inference engine controls and executes
reasoning using the knowledge contained in the database and the knowledge base.

20-7

The system’s general problem solving knowledge is contained in the inference
engine.

The inference engine must be able to determine when it is appropriate to ask the
user for information and when it should consult the knowledge base and database.
The inference engine needs to be flexible to deal with varying situations. It
also may be required to handle imprecise and ambiguous information.

A well designed inference engine will be able to make use of many different
patterns of evidence and use these to narrow the scope of possible conclusions.
Various search techniques are used by the inference engine and applied to the
knowledge base and database to reach a solution. Search techniques are examined
later in this report.

2.2.2 Expert System Implementation

ESs that are most accepted by users and are most successful have a number of
common qualities (Hall and Kandel 1992):

. Problem domain has limited focus.
. User interaction is minimal.
. Problem domains are well defined and manageable - the more limited and

focused the domain, the less knowledge is needed and the less information
that must be verified and tracked.

. Experts are available for consultation.
. Solution verification is straightforward and noncontroversial.
. The systems are not consultation systems, i.e., systems that claim to give

indisputable expert advice.
ESs that have not gained wide acceptance by users typically do not have a good
user interface, are slow in responding, and often ask too many questions of the
user. Many unsuccessful systems are consultation or diagnostic ESs that do not
explain their problem solving processes to the user’s satisfaction.

Rolston (1988) categorizes current ESs into three general classes:

. Assistant -~ Performs a technically limited subset of an expert’s task;
however, generally it is an economically worthwhile system.

. Colleague - Performs a significant subset of an expert's task.

. Expert - Performs at an expert’'s level within a given domain. This type
of system requires a large knowledge base and powerful development tools.

Most systems fall into the assistant or colleague class. It is difficult to
design a system that is capable of replacing an expert in a complex domain.

20-8

2.2.3 Explanation of Reasoning

The ability of an ES to justify to the user exactly how it came to a particular
conclusion is important. The user will gain trust in the system more quickly if
there is an understanding of how a conclusion was reached. Also, errors,
inconsistencies, and omissions are more easily detected in the debugging process
if the path of reasoning can be traced.

2.2.4 Knowledge Representation

Knowledge is the fundamental part of an ES and is where the system achieves its
power to solve problems (Rolston 1988). The effective representation of domain
knowledge is considered the key to the success of AI programs. When choosing a
form of knowledge representation, an important consideration for the designer
should be the ease with which knowledge can be changed and updated. Flexibility
is essential to handle input from human experts who often may change their minds.
It is necessary to model a knowledge domain accurately.

Knowledge representation language is the method used to represent facts.
Knowledge is defined in terms that can be manipulated by programs. Two common
representation languages are natural language (English language sentences) and
symbolic (representations of objects at the knowledge level defined in terms of
symbols). Basic criteria for a knowledge representation language are as follows
(Fikes and Kehler 1985):

. Expressive power - Experts must be able to communicate their knowledge
effectively to the system.

. Understandability - Experts must be able to understand what the system
knows .

. Accessibility - The system must be able to use the information it has been
given.

The knowledge representation must facilitate inferencing, which converts the
explicit set of beliefs about a problem domain to a larger effective set of
beliefs. Three main ways of representing knowledge in an ES are rules, semantic
networks, and frames.

Rules are a formal method of representing strategies, recommendations, and
directives. Years of problem solving experience in a particular domain result
in empirical associations that are suitable for representation by use of rules.
An inference engine sorts through the rules and available data to reach a
conclusion.

Semantic networks originally were developed to be psychological human memory
models. Their use is now commonplace in the AI field. The network represents
knowledge by using nodes and arcs. Nodes can represent objects, concepts, or
events, while arcs are used to represent relationships or hierarchies between the
nodes.

20-9

Frames are similar to semantic networks in that both nodes and arcs are used for
representing knowledge. For frames, however, the nodes can take on a collection
of attributes with their associated values. Each attribute can have attached
procedures that execute when a value is changed.

2.2.4.1 Rule-Based Systems

Rules are a subset of predicate calculus with additional components to signify
the way information in the rules should be used for reasoning (Fikes and Kehler
1985). Predicate calculus represents knowledge about real-world facts as
statements.

Most current AI technology is rule-based. Rule-based systems constitute the best
presently available means for codifying the problem solving methods of human
experts. They are the most commercially successful AI products.

Rules are the most popular and effective representational form for behavioral
knowledge in knowledge systems. Rules are fairly simple to work with and are
relatively independent of each other. This independence allows incremental
construction of AI systems. Rules also are able to represent different types of
knowledge. Experts find it easy to state their knowledge in the form of rules.
Rules lend themselves to expressing the heuristic knowledge that comes from
experience (Friedland 1985).

Experts generally express most of their problem solving methods in terms of
situation—action rules. Rule-based systems can incorporate rules that imitate
the way experts reason. Rules must allow one to encode an expert's knowledge as
thoroughly and efficiently as possible, and the rule-based system must be able
to convey its knowledge and reasoning schemes to people of varying skill levels.
Other types of systems lack the reasoning schemes used by experts and, therefore,
cannot solve practical problems efficiently.

All rule-based systems have several properties in common (Hayes—Roth 1985):

. They use IF THEN rules to incorporate human knowledge.

. They use larger knowledge bases to perform at a higher skill level.

. They have the ability to solve a wide range of problems by combining rules
appropriately.

. They deterﬁine the best sequence of rules to pursue.

. They can explain their reasoning by retracing their steps.

The rule base contains an expert’s knowledge that is used to solve a problem.
A rule-based controller models the behavior of the human expert, as opposed to
modeling the problem solving methodology. This is a flexible approach to
codifying knowledge and is well-suited for representing the knowledge used to
control a system.

20-10

The usefulness of a rule-based system is dependent upon the fidelity of knowledge
and problem representation. Problem solving using a rule-based system goes
through many cycles of identifying the rules that have bearing on a particular
problem and then applying those rules to solve the problem or achieve the end
goal.

Rules can express the following (Hayes—Roth 1985):

. Deductive knowledge - Logical relationships, inference, verification, and
evaluation.

. Goal-oriented knowledge - Used in seeking problem solutions.

. Causal relationships - Used to determine possible causes for specified
events.

Control rules represent the expert’s problem solving strategy. These rules are
a way to achieve control over the system while maintaining clarity. There are
two types of control rules: those that represent knowledge and those that
represent the problem solving strategy. The rules that represent the problem
solving strategy are a special type of ES knowledge called meta-knowledge.

Basically, meta-knowledge is knowledge about the system knowledge. However,
meta—knowledge often can worsen system transparency by complicating testing and
making maintenance difficult. System transparency means that the system’s

knowledge is dependant neither on its location in the system nor on any of the
other knowledge found in the system. Further research is needed so that ways to
better represent meta—-knowledge can be identified. For applications that are
more than trivial, transparency and simplicity of the code seem to diminish
(Coats 1991). Separating declarative and procedural knowledge makes the system
easier to code, debug, and maintain.

If rules are transparent, their meaning is completely independent of their
location in the rule base. However, this means the order in which the rules are
processed is difficult to determine by examining the rules themselves.
Conventional programming has low transparency but high behavioral visibility.
Conventional programming controls the way programs process information.
Controlling the way programs process information is detrimental to rule-based
programming since it creates knowledge bases that are difficult to read and
maintain. ESs are programmed to tell the system what to know, while conventional
programming instructs the system what to do.

Sometimes rules may include procedural content. They represent knowledge of
procedures and methods to process data. Generally, there is little information
in the knowledge base about when rules should fire (execute). In theory, using
rules to represent procedural knowledge can be risky because it can cause
knowledge to become intertwined. When this occurs, it becomes difficult to
follow the steps taken to solve the problem. The rule base and the inference
engine which processes the rule base should be separate. Global control
strategies should be context free. The selected control strategies may be
applied regardless of the situation.

20-11

When procedural content is included in the rules, they become less independent
of each other and their position begins to play a crucial role in producing
correct results. Proceduralizing among the rules as opposed to within the rules
also should be avoided. Rules should not be grouped together to imply procedures
as a group. Rules should reflect knowledge, not procedures, and avoid implicit
or hidden meanings. A particular problem may be more suited to traditional
programming techniques when procedural content within the rules cannot be
avoided.

When debugging a conventional program, normally the challenge for the programmer
is in determining which statements are out of order. The sequence of events is
followed easily. In an ES, the challenge is to determine how the inference
engine is processing the rules, ensuring that the rules are correct, and
adjusting the inference engine’s method of processing the rules.

Conventional computer programming requires programmers to think procedurally,
while rule-based programming requires programmers to think more analytically.
Rule programming is similar to conventional programming because it requires
mental modeling of state changes, syntactic and semantic checking of rule
conditions, and heuristic methods for validating and verifying a proposed system
(Hayes—Roth 1985).

As with conventional computer programming, structure is critical. A well-
structured rule base is easier to test and maintain and better represents
knowledge. In classic rule-based ESs, an inference engine processes a knowledge
base composed of rules. The separation of the knowledge base and the processor
of the knowledge makes the rule-based ES easier to develop, test, and maintain.
Because of this, rules can be manipulated without affecting processing or other
rules.

Automating expertise in specialized tasks generally requires a few hundred to a
few thousand heuristic rules (Hayes—Roth 1985).

A rule-based system consists of three elements:
. A working memory (database) - Contains data structures that represent the
current solution state of the system or intermediate results. Contents

change until the final solution is found.

. A set of rules (knowledge base) - Contains IF THEN statements from rules
and facts. This is a permanent, static structure.

. An inference engine - Contains hardware and software that matches the
conditions in the rules to the entries in working memory and fires the
rules if there is a match.

Two useful characteristic features of rule-based systems are incremental

development, which allows knowledge to be refined and added, and explanation of

reasoning, which aids in understanding computer systems.

Guidelines for a well-structured knowledge base are given below (Pederson 1991): |I

20-12

. Keep conclusions simple - Rules should only update one attribute at a
time; the results are clear and easy to follow; and it is easy to tell
which rule is responsible for which action.

. Keep rules free of procedural content.
. Minimize the use of ELSE constructs.

A poorly structured rule-based ES would be analogous to excessive use of GOTO
statements in conventional programming. It is difficult to follow the path that
the program is taking, and, therefore, more difficult to debug. Rules with
multiple conclusions or the use of ELSE statements result in a process that is
confusing to follow.

To be successful, a rule-based ES should have the following characteristics
(Weiss and Kulikowski 1984):

. The conclusions must be generated by the system from a finite set of
discrete and prespecifiable elements.

. The evidence about the problem must be obtained reliably by the user of
the system or the system itself.

. The initial assumptions must limit the problem to a highly specialized
area.

. A knowledge base must be available to link evidence about the problem to
conclusions.

. A reasoning control strategy must be designed to guide the reasoning of

the system and make its output correspond to that of a human expert.

The types of knowledge that can be included in rule-based systems follow (Hayes-—
Roth 1985):

. Inferences that follow from observations

. Generalizations of data

. Conditions for achieving a goal

. Best places to find relevant information

. Best strategies for eliminating uncertainty and mlnlmlzlng risks
. Probable causes of symptoms

. Likely outcomes of hypothetical situations

Future goals for rule-based systems include the following:

. Increasing the size of the rule base to 10,000 or more rules

. Increasing the processing speed

. Using more inference techniques

. Improving reasoning with uncertainty

. Simplifying the process of creating and extending knowledge bases
» Sharing knowledge bases

20-13

. Improving architectures
. Generating more efficient ES development tools

Rule-based systems have the ability to capture, represent, store, distribute,
reason with, and apply human knowledge. They are a practical solution to
building automated experts and are especially applicable in tasks that require
consistency and practical experience. Although AI developers have generated
other approaches, the rule-based method is the only one that consistently
produces accurate results. Rule-based systems offer advantages that cannot be
found in traditional programming techniques (Hayes—Roth 1985):

. Modularity

. Knowledge bases that store rules and facts and make decisions

. Explanations of results

. Easily understood beliefs and problem solving techniques

. Inference chains (the path of reasoning and searching that the inference

engine follows to achieve a goal) that are efficient
2.2.4.1.1 Rule Architecture

Rules basically are independent pieces of knowledge. As the rule base gets
larger, rule components (antecedent, conclusion) must be flexible and independent
enough so that extension and maintenance of the knowledge base will not adversely
affect them (Hayes—-Roth 1985). The rules are in the form of IF THEN statements
and may contain the knowledge of one or more experts. The inference engine
manages the rule base by using search expressions or algorithms.

The left side of the rule is the situation recognition part, known as the
antecedent or premise. The right side is the action part, referred to as the
conclusion or consequent. The antecedent expresses some condition in the state
of the database and describes if and when it is satisfied. Usually it consists
of a sequence of clauses connected by AND or OR, which serve as minimum and
maximum operators. The action part specifies what changes are to be made to the
database when a rule is satisfied. The inference engine monitors the facts in
the database and when an antecedent is satisfied, it executes the corresponding
action.

The current facts, along with the inference engine, make up the computing
environment. Together they serve to interpret the current state, understand the
meaning of the rules, and apply the rules appropriately.

When the consequent defines an action, scheduling the action for execution

satisfies the antecedent. When the consequent defines a conclusion, inferring
the conclusion will satisfy the antecedent.

20-14

There are several functions that the rules perform (Hayes—Roth 1985):

. Simplify auditing and explanation by having the ability to trace every
result to its antecedent and intermediate inferences.

. Simulate reasoning by expressing logical relationships.

. Simulate human understanding.

» Simulate human decision making by using conditional rules to express
heuristics.

The rules must cover all possible combinations. If no antecedents are satisfied,
then no action will be taken.

2.2.4.1.1.1 Reasoning with Inexact Concepts

Certainty Factors (CFs) are values that represent the level of belief associated
with a fact or a rule. They are a means of providing a judgement about the
certainty of a conclusion, which is determined by combining degrees of belief and
disbelief. The CF is based on the level of certainty known about conditions in
the premise. Every time a new rule is considered, a new CF is calculated. The
use of CFs is a technique for supplementing existing reasoning processes with
information regarding uncertainty. Normally, an interval between 0 and 1 is used
to represent the CF, with 1 being absolute certainty.

2.2.4.2 Semantic Networks

A semantic or associative network is a way of representing knowledge. Nodes
represent objects, concepts, or situations in the domain. Arcs (links) represent
relationships between the nodes. A network is a representation of the relations
between elements in a domain using interweaving and crisscrossing arcs (Rolston
1988). A semantic network is a graphical representation of a network. Figure
2.2-2 shows the semantic network architecture. Arcs can also have weights, which
indicate the strength of the relationship between the nodes.

Arc labels indicate the basis of the relationship between the two arcs. An arc
can be viewed as something that is asserted to be true about one element relative
to another (Rolston 1988). For example, "DC-10" is linked to "aircraft."

Semantic networks are easy to read. They are based on an object—oriented
illustration, meaning the representation is based on objects that are treated as
independent pieces of knowledge in the computer. Semantic networks are

represented in a computer by using memory addresses to depict the arcs that go
from one node to another. This facilitates access to all parts of the semantic
network.

2.2.4.3 Frames
The organization of frames is similar to that of semantic networks. Frames
consist of a set of slots that contain data, procedures, or pointers to other

frames. The pointers can create nested frames. When slot relations warrant some

20-15

a— Objects

Associated
--— Weights

SEMANTIC NETWORK STRUCTURE

FIGURE 2.2-2.

action, the procedures will define the type of action to be taken (Hall and
Kandel 1992). Frames provide structured representation of an object or class of
objects. Table 2.2-1 illustrates the frame architecture. Frames are well-suited

for applications in which complex descriptions are needed to depict the domain
accurately. They provide the knowledge base builder with a means of describing
the types of specialized objects that the system must model.

TABLE 2.2-1. FRAME STRUCTURE

Frame Label Facette 1 Facette 2 Facette 3
slot, valuey; valuey, value;;
slot, value,; value,, valuey,
slot, value,; valuey; value,;

Frames provide the ability to interpret new situations on the basis of knowledge
gained from similar situations. Often, in the beginning of frame development,
a best fit frame must be chosen for the current situation because there may not

20-16

be an exact frame that fits at that time (Rolston 1988). As development
continues, frames may be added and/or changed.

Frames are appropriate for representing prototypical knowledge and the properties
of objects to be modeled. Frames identify specific pieces of knowledge that
belong together in a group. Frames are made up of pieces of knowledge that are
typical characteristics of the ideas associated with that particular frame label.
The pieces of knowledge in the frame are called facettes and they take on values
that uniquely identify the characteristics of a specific object.

For example, a particular frame may be labeled Aircraft Accident. The facettes
that may be contained in that frame include components normally associated with
any aircraft accident:

. Cause

. Number of passengers

. Number of crew members
. Number of injuries

. Location

. Date

. Time

For an aircraft accident, these facettes are filled with values that can identify
a specific accident. When the values are entered into the facette, the result

is a particular instance of the general concept Aircraft Accidents represented
as a frame (Adeli 1990).

Frames are an excellent way for a knowledge system to organize and direct its
reasoning activities. As with semantic networks, frames are an object-oriented
form of representation. The use of frames, along with rules, may be a promising
area for improvements in knowledge representation. When representing knowledge,
rules and frames integrated in a single unified representation scheme work best.

2.2.5 Updating the Knowledge Base

Machine learning is a process by which a system generates and updates Iits
knowledge base. The system learns from past experience. This is the ultimate
goal for updating a knowledge base. This area, however, has not been perfected
and requires more research.

Knowledge also can be updated manually. This process is performed by a knowledge
engineer who interprets and encodes knowledge from a human expert. Another form
of updating knowledge is for the expert to enter knowledge directly into the
system with the assistance of a tool designed to perform the knowledge engineer’'s
tasks. The knowledge engineer is eliminated.

2.2.6 Chaining

Chaining refers to the path of rules that the inference engine fires to achieve
a solution. The inference engine can process information in one of two ways:
forward or backward chaining. Some ESs, such as blackboard systems, use a
combination of the two methods.

20-17

2.2.6.1 Forward Chaining

Forward chaining uses bottom up or event driven reasoning. A rule is triggered
when changes in working memory data produce a situation that matches 1its
antecedent component. This method begins with some initial data and moves down
the inference chain until it reaches a solution to the problem. Working memory
is used to store the new facts. Working memory also stores initial observations,
findings, and conclusions.

2.2.6.2 Backward Chaining

Backward chaining is the process of working backward from a known conclusion to
find a path of reasoning to justify the conclusion. The goal is assumed to be
true and the inference engine searches for evidence to support that conclusion.
The rule-based system begins with a goal and successively examines any rules with
matching consequent components. The unmet conditions of the antecedent are taken
from each applicable rule and then defined as new goals (Hayes—Roth 1985). 1In
backward chaining, working memory is used to note unresolved subgoals. This is
also known as goal directed, or top down, reasoning.

2.2.7 Knowledge Acquisition

Knowledge acquisition is a lengthy process in which the knowledge engineer must
meet with a known expert who is willing to provide information. It is a tedious
process and creates a bottleneck in ES development. It is one of the most
difficult phases of ES building. The knowledge acquisition process is not well
understood or well defined (Rolston 1988).

Knowledge can be represented as procedural or declarative. Most declarative
schemes are knowledge represented as static facts, along with a limited amount
of information that describes how the information should be used.

An ES shell is an ES with an empty knowledge base. ES shells require knowledge
engineering that extracts a collection of highly detailed facts from a human
expert and programs them into a database. This process requires repeated testing
of the program to verify and account for all possible situations.

Both procedural and declarative knowledge are needed for every ES. However, they
should be kept as separate as possible. Generally, procedural knowledge is found
in the inference engine and declarative knowledge is found in the rule base.

The inference engine utilizes meta—knowledge. Meta-knowledge includes
information on how to utilize available knowledge, in what order the knowledge
should be used, where the knowledge can be obtained, and the point at which
processing is complete.

Knowledge engineering can be an expensive, time consuming, and difficult task for
the following reasons (Adeli 1990):

. Vocabulary - The knowledge engineer must comprehend the basic vocabulary
of the domain.

20-18

. Completeness - The knowledge engineer must understand the domain
sufficiently to identify pieces missing from the knowledge base.

. Integration - New information must be added to the knowledge base in a way
that will not adversely affect existing knowledge.

. Analysis - The knowledge engineer must have the ability to evaluate the
expert’s methods for arriving at conclusions.

. Transparency - The knowledge engineer must incorporate the expert’'s
problem solving behavior into the knowledge base.

Knowledge engineers need to have a working knowledge of the domain that is being
modeled. They need to become proficient in the field to be able to comprehend
the expert’s information and to determine how to handle situations. For example,
the knowledge engineer must determine how to handle contradictions and
inconsistencies between experts. The knowledge engineer may need to resolve
conflicting, redundant, subsuming, or missing blocks of knowledge.

Several tools have been developed to assist knowledge engineers with prototype
development. Some tools may replace the knowledge engineer with an automated
acquisition system. Any system intended to replace the knowledge engineer must
be able to perform all knowledge engineering tasks.

2.2.8 Applications

Applications suitable for ESs are presented below:

Applications where a proven expert is available.

. Systems that entail robot activities.

. Limited domains with well defined expertise.

. Systems that do not require extensive user interaction.

. Problems that do not have a large amount of uncertain information. (An ES
will no longer be appropriate when a specific level of uncertainty is
reached.)

The use of an ES may be justified when experts are rare or soon will be
unavailable, identical expertise is needed in many locations, or the expertise
is needed in a hostile environment.

If the problem to be solved can be described by direct definitions and
algorithms, it may be solved better by traditional software methods. In
addition, if the problem is extremely difficult to define or requires intense
judgement, it may be too complex for an ES and will need to be solved by
traditional methods (Rolston 1988).

20-19

A number of characteristics are common to ESs in use today:

. There are proven experts available.

. The task requires a well defined domain without changing rules.

. The problem requires more cognition than physical attributes.

. The problem takes an expert a few minutes to a few hours to solve.

. The experts teach their skills and are able to explain their reasoning.
. Solving the problem will produce considerable benefits.

. The problem solution requires no common sense.

. There is low risk if a bad decision is made.

An ES attempts to find an acceptable, but not necessarily the best solution, in
a reasonable amount of time. It deals with a specific problem domain, as opposed
to attempting to mimic human behavior in all domains (Rolston 1988).

2.2.9 Heuristic Reasoning

An heuristic is any rule of thumb or strategy that is used to limit the time
required to search for solutions in large problem areas (Coats 1991). Heuristics
is the study of the processes involved in solving a problem. Heuristic reasoning
is reasoning in the form of general rules, hunches, or rules of thumb that are
approximate and generally have been acquired through years of experience.
Heuristics contribute to an ES's power and flexibility and set them apart from
traditional software.

Heuristic reasoning can provide direction to a search process, thereby reducing
the area in the knowledge base that must be searched. It can assist in processes
that include eliminating entire branches of a search tree, selecting a general
path to follow, and selecting the next node to expand.

Heuristic reasoning is used in the absence of more precise control mechanisms
because it uses rules of thumb that are meant to produce acceptable results in
most cases. A drawback of heuristic reasoning is that it could lead a search
down the wrong path.

The technique of programming used by most ES programmers is referred to as
heuristic programming. The exact behavior of the system may not be precisely
specified or predictable by the programmer (Denning 1986). These are techniques
that can only be acquired from years of experience in a specialist domain. This
type of knowledge tends to be inexact, uncertain, and incomplete. Most of the
time, heuristics offer reasonable but not necessarily the best solutions.

2.2.10 Searching

Occasionally, more than one rule may be eligible to fire at the same time. A
methodology to resolve these conflicts must be established. The most systematic
ways of resolving conflicts are breadth first and depth first searching. They
can be used with either forward or backward chaining. Both of these search
techniques can be used with rule-based systems.

20-20

2.2.10.1 Breadth First

In a breadth first search, all possible subgoals on one level are considered
before the next level is examined (Adeli 1990). Increasingly broad segments of
the solution space are created and each level is checked for a goal state. All
possible successor nodes are created from each state by applying applicable
operators to the existing nodes. This ensures that the nodes at a given level
are checked before the next level is addressed. Figure 2.2-3 shows the breadth
first search strategy.

Number of Action or

Rule Applied to
Generate Next State (0, 0)

2 5

(4,0) 0, 3)
1 4 6 2 3 8
(4,3) (0,0) (1,3) (4,3) (0, 0) (3,0)
The State of the Solution at

This Point after a Particular
Action Has Been Applied

FIGURE 2.2-3. BREADTH FIRST SEARCH TREE (Rich and Knight 1991)

2.2.10.2 Depth First

Depth first searching entails pursuing each branch of a tree completely before
considering another branch. When a goal or a subgoal matches the left side of
a rule, all premises of that rule are examined before another subgoal is
considered. This technique takes one idea and pursues it until a goal is reached
or the limit of that branch of the tree is reached (Adeli 1990). The choice of
the node used in continuing the path may be based on random selection. Figure
2.2-4 shows the depth first search strategy.

2.2.11 Expert System Drawbacks
The purpose of an ES is to perform a difficult task or resolve a substantial
problem. It is rare for an ES to outperform a human expert and, if it does, it

is because the ES forgets less rather than remembers more. Problems that are
suited for ESs may require long development and testing times and can be costly.

20-21

A number of problems exist with ES methodology, code, knowledge acquisition, and
validation (Coats 1991):

. Methodology - The use of IF THEN statements can be clumsy and unsuitable
to express knowledge effectively.

(0,0)

—— e - - -

I
P (0,3
L._;,P:..
// ! ~
// ! \\
- i ~
// | \\
- mm mm o et ® em e am ew - - e
I Lo o 1o P !
(4, 3) 00 11 (1,3 1 1 @43 a1 00 4, 1 B0
| IR J Lo J I J L m = J b J

FIGURE 2.2-4. DEPTH FIRST SEARCH TREE (Rich and Knight 1991)

- Code - Can be difficult to understand, debug, or maintain, and does not
always provide adequate user interface.

. Knowledge acquisition - It is not always clear how to resolve conflicting
views among acknowledged experts.

. Validation - Methods for validation are still being researched. Perhaps
the basic question should be "does the user of the ES make better
decisions by using it?"

One main concern about ESs is reliability. Their effectiveness ultimately relies
on the system developers. Very large databases are hard to maintain and it is
difficult to account for all possible situations.

Unless ESs are designed to provide reliability and maintainability, they will not
be capable of handling complex, real life situations. They need to be adaptable
to deal with situations that lack complete information. Care must be taken to
determine whether an ES is suited to the problem.

There are many influences in an ES domain that may introduce uncertainty into a
problem (Hall and Kandel 1992):

. Characteristics of the solution to the problem
. Questions asked to determine the solution

. Knowledge acquisition process

. Reasoning process of an expert

20-22

. Knowledge representation language
2.2.12 Future of Expert Systems

Currently, interest in ESs is high and their applications are increasing.
Relatively low cost computers are being developed with large memories, ample disk
space, and faster processing capabilities. These capabilities will enhance the
possibilities for developing ESs with broader applications.

ESs are most accepted if they critique conclusions or act as advisors. The goal
of using an ES is to improve productivity and the quality of decision making.
In the future, powerful software and hardware may be all that is necessary to

develop a system. The ultimate goal will be to eliminate the role of the
knowledge engineer and enable the experts to encode their own knowledge directly
on the computer. Attention should be focused on methods of extracting and

representing knowledge (Weiss and Kulikowski 1984).
2.2.13 Blackboard Systems

A blackboard system is a type of ES with a slightly different architecture. It
is a multiple knowledge source system in which data are shared between sources.
A knowledge source system is a program whose knowledge is in a separate database
that can be manipulated by the user. The shared data provide communication and
cooperation between the experts. The rules have access to all parts of the
blackboard. The blackboard serves as the input to the rules and as a record of
the outcome of the rules. The blackboard can display the best interpretation of
a specific problem at any given time.

The blackboard is the controller for the entire structure. It records and
organizes solutions that are generated during the problem solving process.
Knowledge bases can communicate only through the blackboard and they can generate
input to the incremental solution on the blackboard whenever they have relevant
information. There is no priority or hierarchy established for knowledge bases
to contribute to the blackboard, and the system is not committed to forward or
backward chaining. It can implement whichever it sees fit.

The objective of each knowledge source is to contribute information that will
lead to the solution of the problem. Each knowledge source must recognize when
conditions are appropriate for its contribution to the solution. Each knowledge
source has a separate inference engine. Some architectures contain a scheduler,
which chooses the next knowledge source to contribute data.

Blackboard systems solve problems by dividing them into several smaller
subproblems to be solved separately. The problem dividing method influences how

well the problem is solved.

Advantages of a blackboard system include the following (Engelmore and Morgan
1988):

. Many knowledge sources participate in forming a solution.

20-23

. Each knowledge source has continual access to the current state of the
solution and can contribute when needed.

. The solution is built incrementally.
. Both forward and backward chaining can be used.

The classic blackboard system architecture, as shown in figure 2.2-5, consists
of the following (Cohen 1985):

. Several knowledge sources - Collections of production rules
. A database or blackboard
* A scheduler (optional) - An independent knowledge source that determines

which knowledge source should be activated next to determine a solution

Blackboard Scheduler
Natural Natural
Language Language
Interface Interface
Blackboard Blackboard
Interface Interface
inference Inference
Engine Engine

Knowledge Base Knowledge Base

Knowledge Source 1 Knowledge Source 2

FIGURE 2.2-5. BLACKBOARD SYSTEM ARCHITECTURE

20-24

2.2.13.1 Knowledge Sources

Each knowledge source is an ES in its own right, with an internal structure which
can be independent from other knowledge sources. For example, the structure can
be rule— or procedure-based, or can be homogeneous or heterogeneous. The form
of the rules and the way knowledge is represented can vary from source to source
(Engelmore and Morgan 1988).

2.2.13.2 Blackboard System Control

Blackboard systems determine their own cognitive behavior to solve problems
involving the control of another system. The system must determine the problems
it will attempt to solve and the knowledge and methods it will use to solve the
problems. The system goal can be choosing an area of the blackboard on which to
concentrate next, choosing a particular knowledge source to utilize next, or some
action between the two. Whichever method is chosen, it must be the most
efficient for the particular application. Selecting irrelevant knowledge sources
must be minimized. The control can be integrated into the system design or it
can be a separate ES.

The blackboard is a record of the hypotheses reached and the way they
interconnect. Attached to each hypothesis on the blackboard is a measure of
likelihood, which is a measure of the system’s confidence level in the
hypothesis. The likelihoods of the hypotheses are updated continually. Changes
made to the blackboard are called events. These include creating or deleting
objects, changing values, and creating or destroying links between objects.

Blackboard architecture is a control structure design. The knowledge sources can
communicate only through the blackboard, so the events are tracked easily.
Blackboard models contain a great amount of information. Knowledge sources are
not activated in any particular order. They contribute hypotheses in response
to appropriate situations on the blackboard, or the scheduler may decide when
they should contribute in response to the situation. They represent an
opportunistic approach to solving problems that allows the knowledge bases to
contribute only when appropriate (Cohen 1985).

Blackboard systems do not search for solutions; rather, they build an emerging
solution from all independent knowledge sources. The presence of many different,
independent knowledge sources leads to parallel processing architecture.
Knowledge sources indicate to the blackboard when the problem solving process is
terminated, either because an acceptable solution was found or the knowledge
sources are depleted.

2.2.13.3 Applications

Following are problem types that are well suited to being solved by a blackboard
system:

. Problems requiring many different and specialized types of knowledge.

. Problems with a natural hierarchy of the problem solving strategy.

20-25

. Problems that will benefit from solutions developing incrementally.

. Problems where limited data are available or for which only a partial
solution is possible.

2.2.13.4 Future of Blackboard Systems

More research is required to determine the types of applications that are
suitable for blackboard systems. Also, further study of the characteristics of
particular types of design choices for the systems is needed.

2.3 Fuzzy Logic

Traditionally, vague or imprecise concepts, such as tall, big, and warm, could
not be represented on computers. Expressions such as these are used in our
language constantly and the ability to represent these types of concepts is
helpful when dealing with set membership.

The strength of fuzzy systems, and their reason for being developed, was their
ability to manage imprecision. Fuzzy logic provides the opportunity to model
conditions that inherently are imprecisely defined and deal with statements that
are obscure or subject to different interpretations. It introduces a method of
representing the degree to which an object is a member of a particular set
(Miyamoto 1990).

There are many complex industrial processes that cannot be controlled
satisfactorily by conventional computing methods. The use of rule-based control
established on approximate reasoning provides an attractive alternative. Fuzzy
logic was developed for complex control systems in which mathematical models were
difficult or impossible to create. Fuzzy logic is an alternative to traditional
set memberships. It was developed to express inexact concepts such as "normal
height and weight." These concepts are used frequently in everyday language.
However, they become a problem when attempts are made to express them using
binary distinctions (Cohen 1985).

Fuzzy models provide a more flexible way to acquire accurate solutions to
problems than the rigidness of crisp set solutions (Bezdek 1992). Data are
represented symbolically, but they are processed numerically. Fuzzy logic is a
precise and accurate method of reaching valid conclusions in control systems.
Correctly implemented, it will sacrifice only unnecessary precision. Greater
precision can be achieved by increasing the number of input and output values and
increasing the number of rules (Brubaker? 1992).

2.3.1 The Basic Theory

There are few situations that are strictly true or false. Fuzzy logic proposes
that membership functions operate over a range between 0 and 1, where 0.0 is
total non—membership and 1.0 is total membership. This grade of membership is
particularly helpful in expressing inexact concepts inherent in natural language.
It is a method of representing analog processes on a digital computer.

20-26

The membership functions usually are graphed by using overlapping triangles;
however, other geometric shapes are possible. Membership functions identify
regions that will control the system. The purpose of overlapping shapes is to
allow for partial set membership. The transition between being fully a member
of the set and not a member at all is gradual. It is possible for an object to
be a partial member of more than one set at the same time. Figure 2.3-1
illustrates a set of membership functions related to throttle movement. If the
rotational speed of the throttle is —20 radians/second, it is a member of the set
"Small Negative." The throttle's degree of membership within that set is the
point where a vertical line intersects with the side of the membership triangle.
That would be approximately .6 for a speed of —20 radians/second.

Throttle Movement

Large Small Small Large
Negative Negative Zero Positive Positive
1 ‘ |
¥=3
=
@
L]
a
S
V)
=2
]
3
g
a
0
-60 ~-30 0 +30 +60
Rotational Speed, radians/second
FIGURE 2.3-1. FUZZY MEMBERSHIP SETS
Fuzzy systems are based on the concept of parallel processing. Parallel

processing allows large, complicated problems to be solved by breaking them down
into smaller ones. The results of all rule processes are unified and expressed
as a single logical sum. Compared to conventional control systems, fuzzy systems
require fewer rules and reduce development time dramatically.

Rules are in the form of IF THEN statements that are linked by ORs. They use
labels to describe the problem in words and are worded in a way that is similar
to the human thought process. For example, a rule for controlling a flying
aircraft may read "If nose is low and speed is high, then pull back on yoke."

One of the main advantages of using fuzzy logic is that modifications are made
easily without the need to modify code. Rules and membership functions can be

added without radical revisions. Therefore, designers can concentrate on the

20-27

elements of the problem, as opposed to the details of a language such as FORTRAN
or C (Williams 1992).

Fuzzy controllers are more flexible than conventional controllers. If some
element, such as information, is missing, a fuzzy system will adjust itself
accordingly.

2.3.2 Crisp Logic

Traditional or crisp logic, such as Boolean, is based on predefined thresholds.
For instance, in Boolean logic the output and input are always on or off; there
are no other states. There are many situations that do not conform to Boolean
logic. Fuzzy logic was developed for these situations (Lea 1989). The
difference between crisp and fuzzy logic can be seen in figure 2.3-2.

CRISP LOGIC
2 10—
2
2
E ———
-]
=
° 0.5—1— Tall Women
]
g 1
o
@ oo Lttt 4 1L
T T T T T
5 5'2" 5'¢" 56" 5'8* 510" &'
Height
FUZZY LOGIC
a8 10—
2
2
£ —_
[
=
o 0.5——
8 Tall Women
o
8 ————
(b) 0.0 ' I I l] ‘ |
1 0 1 T 17 © 1 1 11
5' 52" 5'4" 5'6" 5'8" 5'10" 6'

Height

FIGURE 2.3-2. CRISP VERSUS FUZZY LOGIC

Thresholds in fuzzy logic are not clearly defined. Boundaries overlap each other

and it is possible for an object to be partially a member of more than one set.

20-28

2.3.3 Fuzzy Control

There are three steps followed by a fuzzy controller. They are fuzzification,
inference, and defuzzification.

2.3.3.1 Fuzzification

A fuzzy system takes inputs and fuzzifies them. Numeric inputs are converted to
fuzzy values, such as small, fast, or warm. This is done using degree of
membership functions, which are methods of determining the extent to which an
object is a member of a particular group. For example, a particular aircraft may
be considered both a cargo and a passenger aircraft, which would qualify it as
a partial member of both sets. It could be more a member of one than the other,
but nonetheless a member of both to some degree. The resulting degree of
membership then becomes an input to the inference mechanism.

2.3.3.2 Inference Mechanism

Inference is the process of inferring fuzzy actions by applying fuzzy inputs to
a rule base (Legg 1992). Fuzzy actions include "pull back on the yoke,"
effecting a climb rate of 100 feet per minute. Rule-based systems are the most
popular type of fuzzy system at this time. The inference process proceeds from
the conditions to the conclusion (logical product) and then to the logical sum
(Omron 1991). The logical sum is a combination of the results of all the rules.
Figure 2.3-3 illustrates how a fuzzy system determines the control actions to be
taken for a particular example. The object is to balance a stick in the upright
position using seven rules:

. 1f the stick is inclined moderately to the left and nearly still, move to
the left quickly.

. 1f the stick is inclined slightly to the left and falling slowly, move to
the left somewhat quickly.

. I1f the stick is inclined slightly to the left and rising slowly, do not
move much.

. 1f the stick is inclined moderately to the right and nearly still, move to
the right quickly.

. 1f the stick is inclined slightly to the right and falling slowly, move to
the right somewhat quickly.

. If the stick is inclined slightly to the right and rising slowly, do not
move much.

. If the stick is slightly inclined and nearly still, do not move much.

There are seven possible sets in each of the two position antecedent blocks. In
the left/right position blocks, negative corresponds to leaning towards the right
and positive corresponds to leaning towards the left. There are 3 degrees of

membership in either direction: small, medium, and large. In the falling/rising

20-29

AV
W
aAop IoN oQ

AV
wny
BAOW 0N 0Q

AV
Apping
1BYM3WOS
whiy
AV 3] 0] 3A0K

Appoing Wiy
Y] 0] SA0N
AV
L]
SAON 10N oQ
AV

20— — Aping
1Bymawog 113
8iJ} 0} aA0W
AV
Ao yat sy o)
L0~ —~ Kaiesapoyy aropy
AV Wd

abre7 wnipapy (jewg | efuie wnipay jlews

aANIsOd aanebaN

o187
ya by
s)o0|g Juanbasuo)

N3HL 0°0=00

N3HL 0°0=00

/A
N3HL 000=80 . / s
g0~ — /\ o

op yz

K

(wnuyuw)
1onpoid
eaibo

LONAodd "TVIIDOT dHLI ONINIVILEO0

~ induy
op

N3HL 00=00 ms
80— — sowpy
op HzZ

=20 Amoig

T

Buisiy
op Sd

Amoig
Gune4

op

Amoig
Buisiy
op
NIHL 20=20 N — =20 Kmois
Buyie4
op Sd

N3HL £0=80 s
isouwy

op =74

obie] wnipayy |lews | abie7 wnipepy WS
aANISOd aAnebaN

Iy 4

Buisiy Buyjjey

NV

QONY

anNy

aNv

QaNY

aNyY

aNv

"€-€°C d9NO14

pauIfau] JON
1S0Wpy

Wby a1 o)
Abus
pauijou}

Wby syi ol
Anybys
pauoy|

Wby ayi oy
Asiesapopy
pautouy

V.
v
\/

\/

€0 - —
ya18yi ol
Aubyg paurou

m.ollu

yatayiol
Anybns pauyoul

Waiayiol

Ajp1esapopy

pauipu)

Wd

afiie wnipapyy
aAsod

Ha
s)o0ig Juapadsuy

lews | abie7 wnipapy |leWS

Lany

9 8y

S 8|ny

¥ 2Iny

€ 8Ny

¢ 8iny

I 8iny

suonouny

diyssequispy

Juapadajuy

20-30

position blocks, negative corresponds to falling and positive to rising. There
are also 3 degrees of membership in either direction: small, medium, and large.
Both position blocks have a zero where the stick is balanced.

The line labeled "input" is one instance when the stick is at a certain point and
the system is attempting to determine appropriate action. The point is a member
of several sets. Therefore, it must be determined which rules to apply to the
input. This can be resolved by evaluating of which sets the input is a member.
As far as left/right position, at this point the stick is mostly a member of the
set "inclined moderately to the left." It is also partially a member of the set
"inclined slightly to the left." As far as falling/rising position, at this
point the stick is mostly a member of the set "almost still" and partially a
member of the set "falling slowly."

By performing an "AND" operation on the membership functions, the consequent
blocks for each individual rule can be determined. These values are known as the
logical product. Figure 2.3-4 shows the logical sum, which is the total result
of summing the consequent blocks. This total is defuzzified by determining its
center of gravity, which, in turn, becomes the output of the system. The output
is generally applied to another system to initiate an action.

The inference process determines the degree of truth of a rule. The
corresponding action correlates to this degree of truth. The inference system
is a collection of fuzzy IF THEN rules. The inference mechanism uses a method
of approximate reasoning by which an imprecise conclusion is deduced from a
collection of imprecise premises (Lee 1991).

2.3.3.3 Defuzzification

Defuzzification is the process of translating fuzzy or non-crisp values into
values that are crisp and clearly defined. A defuzzifier converts inference
process values to a fixed value. Generally, a non-fuzzy control action, such as
a fixed voltage applied to another system to cause an action, is needed as a
result of the inference process. Normally, more than one rule applies to any
given set of inputs, so the fuzzy system must combine the results of several
rules.

2.3.4 Control Systems

Conventional control systems do not have the ability to self-adapt to changes in
inputs. Adaptive fuzzy control systems can learn, explain their reasoning, and
perform self-modifications, when necessary, to produce more accurate results.
They can change supporting system controls, modify the characteristics of the
rules, modify the topology of the fuzzy sets, and change the method of
defuzzification. Their construction is similar to NN systems.

Fuzzy logic systems make excellent control systems. Controlling with IF THEN
constructs is simpler than creating complex mathematical models. It is generally
easier to create and understand fuzzy control rules than conventional control
rules.

20-31

Negative Positive
A A

r . N r
Large Medium Small Zero Small Medium Large

AV
AV
0 Center
of
Gravity
(Output)

FIGURE 2.3-4. THE LOGICAL SUM
(as applied to the system in figure 2.3-3)

Fuzzy logic systems are designed to handle complex requirements using controllers
that are simple, inexpensive, and easy to maintain. Because fuzzy systems use
intuitive terms, complex systems are modeled easily and rapidly. A system's
operational and control laws are expressed linguistically.

Fuzzy control systems can be cheaper, easier to develop, and more accurate than
traditional control systems. Also, they can respond faster and consume less
power than traditional digital methods. These factors provide the opportunity
to bring products to market faster and more cost effectively.

20-32

2.3.5 Probability

Many people confuse fuzzy theory with probability. Both operate over the same
numeric range, where 0.0 represents false and 1.0 represents true. A statement
is probabilistic if it contains some likelihood or degree of certainty, i.e., the
likelihood that an event will happen. Probability theory deals with the
uncertainty that results from random behavior. The difference between
probability and fuzzy theory is that probability states the chances of
membership, while fuzzy logic states the degree of membership or the degree to
which an event has happened. Fuzzy theory deals with the uncertainty associated
with boundary conditions (Brubaker! 1992).

2.3.6 Parallel Processing

Fuzzy systems can use parallel processing, which allows multiple rules to be
processed simultaneously. High-speed processing can be attained with hardware
controllers because the rules are processed independently of each other. Errors
will not drastically affect the final result in a parallel processing
architecture.

2.3.7 Hardware

Fuzzy systems do not require massive computing power and many applications do not
require special fuzzy Integrated Circuits (ICs). Normally, fuzzy processors work
along with a general purpose microprocessor, which is needed for functions such
as preprocessing inputs, keyboard interaction, and support in other input and
output areas.

Simple fuzzy controllers require less than 10 rules, while complicated ones may
require 40 or more. Some fuzzy processors allow arbitrary shapes for the
membership functions. Some limit the number of shapes and others allow triangles
only.

2.3.8 Designing a Fuzzy System

Fuzzy logic does not require that a designer be able to model a control problem
mathematically. All that is required is a firm understanding of the problem, a
basic understanding of physics, and a concept of how the system should behave.
The designer is not restricted to what can be described with equations (Conner
1993).

The designer of a fuzzy system needs to identify a number of elements:

. The input, output, and operations to be performed on the data.

. The control and solution variables, fuzzy regions, and labels associated
with those variables.

. The rules connecting inputs to outputs.

. The method of defuzzification.

20-33

Control variables appear in the premise of a rule (e.g., density, speed) and are
linked by AND. Determining these variables and creating the rule base are the
most difficult part of designing a fuzzy system.

Labels are names that are attached to fuzzy sets or membership functions (e.g.,
cold, warm, hot). The shapes and slopes of membership functions can be changed
at any time to meet a design criterion. Overlapping input functions guarantees
that at least two rules will fire for any given input and ensures a smooth output
curve. Generally there are an odd number (between five and nine) of labels
(e.g., slow, medium, fast) associated with each variable (Cox 1992). Membership
function sets should be grouped closely at points where the most activity in the
system being monitored occurs.

Rules in a fuzzy system normally are determined by an expert. They are stored
in a rule base that is similar to the thought process that an expert would use
to solve a problem. Because fuzzy rules are abstract, they do not need to cover
every combination of cases that is possible. The rules are defined by the
relation between antecedent and conclusion.

2.3.9 Fuzzy Logic Advantages

There are a number of misconceptions associated with fuzzy logic. Most of these
are addressed in the following list of advantages (Cox 1992):

. Fuzzy logic allows partial or gradual degrees of membership. The concept
that fuzzy logic provides imprecise answers is a common misconception.

. Fuzzy logic is different from probability. When dealing with probability,
the event is clearly defined. Fuzzy logic is concerned with the ambiguity
in the description of the event.

. Fuzzy sets are easy to conceptualize and they are modeled in the same
fashion as an expert’s thought process.

. Fuzzy systems are stable, easily tuned, and can be conventionally
validated. There are fewer rules in fuzzy systems than in conventional
control systems so tuning is simpler.

. Fuzzy systems are different from, but complementary to, NNs. Fuzzy
systems are similar to NN classifiers. However, in a fuzzy system the
classification processes performed on the data are more flexible for the
developer.

. Fuzzy logic is more than process control. Fuzzy logic provides a way of
representing and analyzing information, independent of particular
applications.

. Fuzzy logic is a representation and reasoning process, not the answer to

all AI problems. Fuzzy logic provides the opportunity to manage concepts
that are outside of the realm of conventional Boolean logic.

20-34

2.3.10 Fuzzy Logic Disadvantages

Although fuzzy logic is a promising alternative to traditional control systems,
there are a number of factors that need to be addressed:

. There is not a clear understanding of what applications are appropriate
for fuzzy systems and how they compare to traditional designs.

. Fuzzy systems, when optimized for speed, use an amount of microprocessor
memory comparable to traditional control methods.

. There is no formal design method or system modification and tuning method
that will eliminate all unnecessary rules to find the optimum rule set.
The systems are not analytic and system stability cannot be proven.

. Fuzzy systems can be designed more quickly than conventional control
systems. However, they require more simulation and tuning to optimize
their performance. Fuzzy systems may require the same amount of

development time as traditional systems.

. Fuzzy systems may not be the best alternative for all control system
applications because they cannot prove closed-loop system stability. This
requires much simulation and testing. If traditional control methods are
adequate for a particular system, there is no need to change methods. In
general, if a system can be defined using conventional control equations,
fuzzy logic is not necessary.

2.3.11 Applications

Types of systems that can benefit from fuzzy logic control include the following
(Omron 1991):

. Non-linear systems

. Systems with insufficient or unclear data input

. Systems that are difficult to control

. Systems that benefit from or are normally controlled by human intuition
. Systems that require adaptive signal processing because of dynamic

environmental conditions
. Systems with multiple inputs or conflicting constraints
. Systems for which models are unclear or difficult to define
Fuzzy logic controllers have been used successfully in a wide arena of
applications. Items such as car cruise controls, washing machines, elevator

controllers, vacuum cleaners, subway engine controllers, and security investment
systems have benefitted from fuzzy systems (Schwartz and Klir 1992).

20-35

Fuzzy logic systems are well-suited to model very large systems, natural or man—
made, such as weather, oceans, economy, and stock markets (Brubaker 1993).

2.3.12 Future of Fuzzy Logic

Designing with fuzzy logic is regarded with skepticism, in part due to its close
association with AI. Another reason for skepticism may be distrust of a new
technology that is perceived as revolutionary. Even its unusual name has added
to the skepticism.

However, when compared to traditional system development, fuzzy systems can be
designed more easily than systems using a linear control approach. Also, the
basis of fuzzy design is easier to learn than linear methods.

Japan and Europe already utilize fuzzy technology in practical systems. In the
United States, companies are beginning to turn to fuzzy logic as a viable option
to solving many types of problems. Competition will encourage more involvement
in this new technology.

Replacing traditional control methods with fuzzy systems may expand a system's
capabilities. Just as the microprocessor revolutionized the electronics
industry, fuzzy logic has the potential to do the same for the control industry.

2.4 Neural Networks

NNs are information processing systems that can be trained to solve problems.
Artificial NNs are constructed to resemble the biological neurons of the brain.
Hundreds of thousands of simulated neurons are linked together by synaptic
connections. The structure of an NN is shaped and reshaped, depending on
associations among facts.

NNs have been described as the second best way of solving a wide range of
problems. They are capable of solving virtually any problem that involves
mapping input data to output data. They produce relationships, rather than
insight. The network maps the array of inputs to the array of outputs. NNs can
find acceptable answers, although not necessarily the best answers, in a
reasonable amount of time and for reasonable cost. NNs can spare tedious and
expensive software design when compared to other methods of solving problems.
NNs use information in large databases to extract a set of rules (Intel? 1990).

Rapid progress is being made in the field of NN technology. Scientists are
trying to duplicate the way the brain makes inferences from incomplete or
confusing information (Tazelaar 1989). NNs can classify, store, recall, and
associate information. They can provide several recommendations for a particular
situation in a few seconds. A machine that emulates the way a brain operates
must work in a parallel fashion. There is no centralized site of computing power
in the brain. NNs do not have a centralized computing site either. Rather, each
individual computing site works independently.

NNs learn by association or examples, rather than by rules or mathematical
formulas (Lawrence 1991). Neurocomputers are not programmed, they are trained.

One of the most important objectives when developing an NN is to determine the

20-36

problem and the types of data that are available. Once this is accomplished, the
next step is converting the information to a form that the NN can understand.

Several factors make NNs an attractive system choice for appropriate
applications. These include using incomplete data to produce approximate
results; managing large amounts of data quickly and efficiently; and using
parallelism, speed, and trainability for fault tolerance (Obermeier 1989).
However, appropriate applications for NNs still are being researched and
clarified. The main application at this point in development is pattern
recognition. NNs are best suited for problems in which overall accuracy may be
less important than estimation and flexibility.

Two significant elements in NNs are learning and recall. Learning is the
adjustment of weights (the strength of the relationship between elements in the
NN that are computing outputs) to store information. Recall is the ability to
retrieve the information stored in the weights.

2.4.1 Learning

NNs are data driven. While specific algorithms and problem definitions do not
have to be formulated, the data must be accurate. If the data contain errors,
the network will be trained according to those errors and will not be capable of
producing accurate results. Although the success of an NN depends on accurate

data, a clear physical understanding of the problem is not required to train the
NN.

The most popular learning method is back propagation. To solve a problem with
a back propagation network, the system requires many sample inputs with desired
outputs. The network learns by adjusting weights. Back propagation compares
actual prediction with a correct prediction and uses the error to change adaptive
weights in a direction that is error reducing (Carpenter and Grossberg 1992).
Known information is presented at the input, weighted values are assigned to the
connections, and then the network is run repeatedly until the output is accurate.
Running the network will readjust the connection weights. Data associations that
are frequent will strengthen useful neural couplings, weaken negative couplings
or connection weights, and disconnect unrelated ones. The network must be
trained on preselected inputs and outputs and then it can be run on new
information.

2.4.1.1 Supervised Learning

In supervised learning, trial and error inputs are used to teach the network
correct and incorrect responses. Learning is accomplished through direct
comparison of the network output with known correct answers. When an error
occurs, an error signal is sent back through the network and connection weights
are changed to prevent the same error from recurring. This type of learning
requires a priori knowledge of the results. Supervised learning uses class
membership information. It detects errors because of pattern misclassifications.
A trainer supervises what is output in reference to the input, and the network
establishes a general representation of the regularities of the data.

2.4.1.2 Unsupervised Learning

Unsupervised learning involves no trainer. Rather, the network organizes itself
by establishing its own classification of inputs. This is accomplished by
exposure to a number of inputs. Information used by the system is not
categorized. Therefore, unsupervised learning cannot detect errors as well as
supervised learning. Although this method is less computationally complex, it
usually is less accurate.

2.4.1.3 Self-Supervised Learning

Self-supervised learning takes place without an external monitor. There is a
feedback device that detects errors and adjusts weights accordingly. This is a
combination of supervised and unsupervised learning techniques.

2.4.2 Transfer Functions

The transfer function defines the value of the output signal (Lawrence 1991).
The transfer function is a nonlinear function performed on the output of an NN.
Different types of NNs use different nonlinearities, depending on the type of
output desired. They are methods of limiting the output. There are five
transfer functions regularly employed by NNs: linear, step, ramp, sigmoid, and
gaussian. The differences among them have to do with the shape of the function.
An NN system designer will choose the shape most appropriate for the particular
application.

2.4.3 Construction

A biological neuron consists of axons (output), dendrites (input), and synapses
(pathways for transmission of impulses from one neuron to another). In an
artificial NN, wires are used for axons and dendrites, and resistors with
weighted values are used for the synapses (Obermeier 1989). NNs consist of
layers of Processing Elements (PEs), weighted connections, and threshold
functions. Figure 2.4-1 shows the NN architecture.

The brain is an extremely complex system and artificial NNs are comparatively
simple. In designing an NN, scientists are attempting to duplicate many of the
desirable features found in the brain, such as fault tolerance, flexibility, and
parallel processing (Hertz, Krogh, and Palmer 1991). Figure 2.4-2 shows the
difference between artificial and biological neurons.

The PE, or neuron, is the part of the NN where computing is performed (Simpson
1991). NNs operate efficiently in parallel because each PE operates
independently of the others. All PEs operate in parallel, as opposed to
traditional digital processors, which perform sequential arithmetic and/or
symbolic information processing (Krogmann 1991). A large number of
interconnected neurons work toward a common goal. A PE depends on adjoining
inputs from abutting connections to produce its outputs.

A network achieves stability, or converges, when the weight values associated
with the PEs have finished changing. Networks normally converge, with training,

to a stable solution. ‘

20-38

Connection
Weights

Input Hidden Output
Layer Layer Layer

FIGURE 2.4-1. NEURAL NETWORK

2.4.3.1 Network Connections

The way in which neurons are connected determines the type of processing that
will occur. A connection is a line of communication that goes from a sending
neuron to a receiving neuron. Connections may go between the layers of neurons
in an interlayer or intralayer fashion. The connections modulate the information
flow between the PEs. The strength of the connections between neurons is a
weight. A weight controls the strength of the incoming signal to the neuron.
The degree of cell stimulation is determined by the frequency of the signals
coming into the cell (Krogmann 1991). The collection of weights for the entire
network is called a weight matrix. The knowledge of the network is distributed
across the interconnections of neurons. Weights can be positive, negative, or
zero. Feedback occurs when the output of one layer goes to the input of the
previous or same layer.

The network interconnections can be changed by generating new connections, losing
existing interconnections, and changing existing interconnection weights.

Detailed past information is stored in the connection weights of the network and
is represented by a matrix.

20-39

Cell Body

Outputs

~—— Inputs

Biological Neuron

-— Nodes

Summation
and Output
Input Transfer v

input

Input

Input

Artificial Neuron

FIGURE 2.4-2. BIOLOGICAL AND ARTIFICIAL NEURONS

2.4.3.2 Neural Network Layers

A layer is a collection of neurons in an NN that is separate from other
collections. Neurons are located in input, output, or hidden layers. Hidden
layer neurons connect only to other neurons. Input and output layer neurons
connect to the environment outside of the NN. Three layers are sufficient for

any arbitrary non-linear mapping.

The input layer does not process data; it passes the inputs to the hidden layer.
The hidden and output layers are the processing layers.

2.4.4 Designing a System

Following are some issues that must be resolved before an NN can be successfully
implemented (Hertz, Krogh, and Palmer 1991):

. Architecture - How many units and layers are necessary? How should they
be organized and what type of updating should be used?

20-40

. Training - How many examples should be used? How many times should the
network cycle through the examples? Should learning be supervised or
unsupervised, real-time or non real-time?

. Network type - How much can the network learn? How fast and robust is the
network? How well can it generalize?

. Network hardware - What are the advantages and disadvantages of network
hardware, and how does the hardware compare to software simulation.

2.4.5 Applications

NNs are used to solve problems that digital methods cannot handle efficiently.
They can solve nonlinear problems because the neurons are highly interconnected
and provide a close nonlinear relation between the input and output. Also, they
can handle large amounts of data. Problems that involve complex mathematics
and/or require quick, nonexact answers are suited for NNs. Also well-suited for
NNs are problems that include many examples, but no rules or formulas. An
advantage of NNs over rule-based programming is that if the process being
analyzed changes, all that needs to be done is to collect new examples and
retrain the NN. There is no need to determine new formulas and rewrite software.

Some of the operations that NNs perform include classification, pattern matching,
pattern completion, and signal noise removal. The main application is pattern
recognition. NNs can recognize patterns even when the data are noisy, ambiguous,
distorted, or variable.

Following are characteristics of appropriate problems for NNs:

. The algorithm to solve the problem is unknown or expensive to develop.
. Rules to solve the problem are unknown or difficult to define.
. Large amounts of data are available for the problem at hand.

NNs, however, are not suitable for handling all types of problems. They are not
suited for number processing, therefore, they should not replace data—based or
knowledge-based processing. Traditional digital computers are better suited for
problems that require accuracy and computational power. NNs are not an extension
of sequential computers. Problems that are linear should use linear problem
solving techniques.

2.4.6 Future of Neural Networks

Table 2.4-1 illustrates some of the needs and future applications of NNs.

2.5 Integrated AI Systems

2.5.1 Fuzzy Logic Integrated with Neural Networks

Integrating NNs with other technologies may have considerable potential. The
difference between fuzzy and neural systems is in the way they represent
knowledge. By adding fuzziness to an NN, the designer can describe boundaries

more generally, describe input more vaguely, and maintain better control. Few

20-41

systems are capable of creating fuzzy decision rules and modifying them on the
basis of past experiences. The synthesis of fuzzy logic and NNs has control and
image processing applications.

2.5.2 Expert Systems Integrated with Neural Networks

ESs are suited for problems that are well-defined and specific to a certain
domain, while NNs can deal with a broader and more general range of problems.
ES implementation tends to be a long process, while NNs can provide answers
quickly and with acceptable accuracy.

The goal of integrating these two methods is to extract features from NNs and ESs
to create a system that can provide the advantages of both. The advantages
include reasoning for collecting data and fast, general answers or more accurate,
slower ones. Also, ESs can analyze and validate an NN'’s output.

TABLE 2.4-1. FUTURE EXPECTATIONS FOR NEURAL NETWORKS

Needs

. More powerful serial digital computers

. Better understanding of brain operation

.. Developments in hardware that will support NN speed and storage
requirements

Applications

. NNs integrated with ESs

. Space exploration

. Nuclear power

. Military

. Applications where an NN's graceful degradation would allow
operations to continue under circumstances in which conventional
computers would cease operations

. Any application that would benefit from the unique pattern
recognition and identification capabilities of NNs

There are three steps involved in an ES/NN problem solving process: data
collection, data evaluation, and conclusion analysis. Data collection and
conclusion analysis are tasks best suited for the ES component. ESs are designed
for user interaction, such as collecting inputs and producing outputs. Data

20-42

evaluation is a task well-suited for the NN part of the system, because it deals
with imprecision and learning.

2.5.3 Expert Systems Integrated with Fuzzy Logic

A fuzzy ES is an ES that incorporates fuzzy sets and fuzzy logic into its
reasoning process and knowledge representation. This allows a wide range of
problems to be solved with the benefits of ES techniques and fuzzy theory. Fuzzy
ESs can be user friendly, efficient, and compact.

In some areas, fuzzy methods can replace traditional methods altogether. In some
applications, fuzzy techniques can augment other methods.

Inference procedures that can handle imprecise or vague knowledge are beginning
to be recognized as useful problem solving methods. When developing the rule
base in an ES, experts often express their knowledge in vague terms. An ES can
handle imprecision in controlled amounts. When problems have uncertainty, fuzzy
logic is the desired choice of methods. It has been employed successfully in
several ESs. Fuzzy ESs use human—like behavior to handle concepts and reasoning.

Fuzzy logic is especially helpful for managing the rule base of an ES. It is
nearly impossible to account for all possible combinations of antecedents and
conclusions for any particular problem, especially large, complex problems. The
logic needs to be traced, step by step, from all starting points to possible
solutions. This task can be nearly impossible when dealing with even medium-
sized knowledge bases. Fuzzy concepts, however, allow all combinations to be
covered using fewer rules. Some action always will be taken, even if an exact
match of the antecedent is achieved (Togai and Watanabe 1992).

20-43/44

3. ARTIFICIAL INTELLIGENCE AND EXPERT SYSTEM DEVELOPMENT

This section examines the software, hardware, and development environment related
to the AI field. The software and hardware -development tools and hardware
devices discussed in this section are mentioned as a sampling of available tools,
systems, and devices, and not intended to be a complete listing of what 1is
available.

Complete solutions for AI-based problems are not available exclusively in silicon
at this time. However, in the future this could change as technology continues
to drive IC densities to greater levels of complexity and AI technology continues
to mature. Whether it is a microprocessor with an Al-based native language, or
an NN IC, the device is generally viewed as part of a larger system. Current
applications for Al-based devices are proposed for automating and assisting human
or machine performance. Al-based devices typically function as embedded
processors.

Whether one is concerned only with hardware devices, or only with developing an
Al-based software program, tools are required. Many issues should be examined
when developers are considering a tool for building an Al-based system. There
are many tools available, but the suitability of a tool should be examined

carefully. Tools may be chosen by financial motivation, the developer’'s
familiarity with the tool, or the tool’s compatibility with the developer's
hardware. In some cases, tools are developed and applications are then

fabricated to test them (Waterman 1986).
3.1 Software for Artificial Intelligence Applications

There are many computer languages available for the program developer.
Programming large applications in assembly language (a low level language using
mnemonics to represent the processor’s machine code) is inefficient, costly, and
difficult to debug since there is a large body of code to review. Higher level
languages and other development tools have been created to allow the programmer
to develop and debug code rapidly.

Along with the creation of languages and tools came increases in the complexity
of digital systems and the corresponding complexity of programs required to
control them. Languages created specifically for the purpose of programming Al-
based systems include LISt Processor (LISP) and PROgramming in LOGic (PROLOG) .
Other high level languages have been used as well.

Shaw? (1993) provides a list of AI language products and tools available,

including LISP, Scheme, Rete, Logo, and PROLOG products. Some of the common AI-
specific programming languages are presented briefly in the following sections.

20-45

3.1.1 List Processor

LISP is called the native language of AI (Charniak and McDermott 1985). Many
different versions of LISP have been developed. COMMON LISP was developed in an
attempt to focus these versions in a common direction and enhance the language
portability.

Users can change the syntax of the LISP language to suit themselves. It is
symbol, instead of number, oriented. Data structures are easily constructed in
LISP. LISP is also procedure oriented. Nested subroutines are used to organize
and control program execution.

LISP was designed for manipulating symbols, as opposed to numeric data. The
ability to manipulate symbols has made LISP popular among the research community.
Programming in LISP provides certain benefits:

. An interactive programming environment
. Incremental compilation

. Customization based on the application
. Automatic memory management features

3.1.2 Programming in Logic

PROLOG is a programming language based on mathematical logic. Finding a solution
is a matter of deducing it from the facts. PROLOG has been successful in natural
language processing applications and has been an important language base for the
study of parallel programming techniques (Murphy 1993).

PROLOG software packages come in interpreted and compiled versions, and allow for
the use of recursion. PROLOG is not suited for number crunching or interfacing
to real-time data collection systems (Murphy 1993). Programming is often
performed using two languages to handle the required functionality efficiently.
For instance, C may be combined with PROLOG to be effective in a program with a
mixture of numeric computation and logic.

3.1.3 Tools for the Expert System

ES shells are used to develop knowledge base systems. An ES shell provides the
human interface for programming an ES. Shells limit development flexibility, but
save development time by providing a development environment specifically suited
to ES programming. Shells provide a method for representing and storing domain
knowledge in the form of rules and provide an inference engine for making
decisions based on that knowledge.

For ESs, programming languages and ES shells are used for development. Table
3.1-1 (Waterman 1986) summarizes some of the advantages and disadvantages of
using an ES shell, as opposed to a programming language, to implement an ES.

3.1.4 Fuzzy Languages for Development

Language tools exist for generating assembly code for popular microprocessors
based on a language translation from a predefined set of fuzzy instructions.

20-46

These tools operate on the fuzzy instruction set and convert each instruction
into a sequence of assembly code mnemonics for the selected microprocessor.
Tools also exist for fuzzy processors with a fuzzy-based native language. These
tools define a particular fuzzy assembly language that requires no conversion
process.

Instructions are converted from assembly code directly into executable machine
code for the fuzzy controller.

TABLE 3.1-1. COMPARISON OF EXPERT SYSTEM AND PROGRAMMING
LANGUAGE DEVELOPMENT METHODS

Expert Systems Programming Languages

Advantages Development is easier, Greater flexibility
faster, and, therefore,
less costly

More guidelines and Product may more closely
mechanisms for representing | match the problem being
and accessing the knowledge | solved

base
Disadvantages | Less flexibility Developer will need to
design the knowledge base
and the inference engine
May lack efficiency Takes longer to develop

application

Some tools also generate C code from the translated fuzzy instruction set. The
C code can be compiled and executed on a number of processors. These tools allow
the developer to program using a fuzzy command set. A translation is then
performed to create high—-level C code. The C code can be compiled and executed
on numerous processors and systems.

3.1.5 Other Languages and Tools

Procedures, standards, and development methodologies have been produced for the
use of conventional programming languages in digital avionic systems, but do not
exist for AI specific languages. Since this is so, some of the proposed avionic
applications of AI-based systems have focused on the use of conventional software
for the implementation. In the military community, the use of Ada has been
mandated for future avionics and space applications.

A goal for large scale development of Al-based systems should be to automate as
much of the process as possible by developing tools or by using tools that are
available and suitable. Tools focused on automating the design process decrease
the development cycle time. They also reduce the number of human errors.

20-47

3.1.5.1 Boeing Advanced BlackBoard Ada Generation Environment

One of the tools being developed at Boeing is the Boeing Advanced BlackBoard Ada
Generation Environment (BABBAGE). This tool is designed to be a complete work
environment for the development of Al-based systems.

Leeper (1990) indicates that the need for such a tool set arose due to the
following:

. Reluctance by AI programmers to deal with strongly "typed" languages, such
as Ada

. Necessity to reduce syntactic and semantic coding errors

. Inflexibility of software interfaces to the Al engine

. Requirement to eliminate laxity in programming loosely typed languages

3.1.5.2 CLIPS Expert System Shell

CLIPS is a knowledge base tool developed at NASA Johnson Space Flight Center.
It was written in American National Standards Institute (ANSI) C. It is an ES
shell that has a LISP-like syntax. Some of the features of CLIPS include (Daysh,
et al. 1991):

. Use of variables for control of rules and facts

. Capability to perform LISP-like calculations within rules
. Ability to prioritize the rule firing sequence

. Provision of commands to aid in debugging

3.1.5.3 FORTRAN Library for Expert Systems

The FORTRAN Library for EXpert systems (FLEX) was developed by the Royal
Aerospace Establishment (RAE). It consists of a library of FORTRAN 77
subroutines that allows FORTRAN programs to interface with ESs. In addition to
the subroutines, FLEX supports a separate knowledge base and provides explanation
facilities (Daysh, et al. 1991). Butler and Corbin (1988) give further details
on the features and operation of FLEX.

3.2 Artificial Intelligence and Expert Systems Hardware

Development of AI applications based on LISP began on an IBM 709. A high-
performance application, MacLisp, appeared on the PDP-10. Other special purpose
LISP machines began to appear, such as the Xerox PARC and Symbolics systems.
Now, systems implementing Al-based applications are being developed using generic
systems with compilers for the particular task at hand. Development environments
exist for mainframes, workstations, and PCs.

Target environments for implementations vary widely. For instance, one Al

implementation was performed using a MIL-STD-1750A processor, 64k memory, and the
Ada programming language.

20-48

Recently, however, great strides have been made in the development of silicon-
based devices that implement specific AI technologies. Most notable are high-
speed and dense NNs and very fast fuzzy logic processors.

3.2.1 Neural Processors

NNs are implemented in both software and hardware. A software—implemented NN may
be a standalone or an add-on software package which can run on a number of
computer platforms. Inputs to the NN, as well as the weights, are stored in
computer memory. The software performs processing based on a fixed or user-
selectable algorithm. The output state is then determined based on the inputs,
NN weights, and calculation method. Typically, users adjust the weights, choose
the calculation method, and train the network. Software-based NNs may derive
inputs from various external or internal sources, such as spreadsheets,
databases, and custom input files. Where higher levels of performance are
necessary, NNs are implemented using hardware accelerators or NN ICs.

Neural processors have been the focus of significant research recently. The
following sections examine some of the silicon-based AI hardware that is either
currently available or in some phase of research and development.

3.2.1.1 B80170NX Electrically Trainable Analog Neural Network

The 80170NX Electrically Trainable Analog Neural Network (ETANN) is an
Electrically Erasable Programmable Read Only Memory (EEPROM)-based IC available
in a 5-volt pin grid array (PGA) package with 208 pins. It is both Transistor-
Transistor Logic (TTL) and Complimentary Metal-Oxide Semiconductor (CMOS)
compatible at the interface connections (Intel! 1990).

The ETANN is internally configured with 64 neurons and 10,240 synapses. Inputs
to the ETANN are both internal (feedback) and external. The device feedback
inputs can also be used as device inputs, providing up to 128 total inputs.
Performance claimed for this device is greater than 2 x 10° connections per
second.

The use of EEPROM makes the device weights reprogrammable and nonvolatile.
Individual weights and neurons are addressed using the device’s address lines,
and the weights are stored internally. A Learn Control pin allows the NN to
operate in a learning mode, which causes the values of the synapse weights to
change.

NNs are typically made for cascade operation. The outputs and inputs are voltage
and current compatible so that the output from the first device connects directly
to the input of the second device. Connections between ETANN devices can be made
using either a bus interconnection scheme or direct pin-to—pin wiring (Intel!
1990).

3.2.1.2 NilOOO Neural Network Integrated Circuit
One of the programs of the Advanced Research Projects Agency (ARPA [formerly
DARPA]) is the Artificial Neural Network Technology program. One of the

directions of this program is to fund development and applications of the Nil1000.

20-49

Development is being performed by Intel and Nestor. Lockheed Missiles and Space
Company is the first Beta test site for thls device (Coleman 1993). The NilOO0O
design contains 1024 artificial neurons, implemented wusing 3.7 million
transistors. Processing speed for the device is claimed to be 20 billion integer
operations per second.

3.2.1.3 RN-200 Neurocomputer

This Neurocomputer IC was designed by Ricoh of Menlo Park, California. It is
fabricated using CMOS technology as a gate array device with 200,000 gates, using
.8-um line widths. A total of 256 synapses are implemented on the IC. It
consists of three layers: the input, processor, and output layers. The neuron
update rate is claimed to be 1.5 billion per second when the device is running
at a processing speed of 12 MHz (Normile 1992).

3.2.1.4 M1718 Digital Neural Network

The M1718 Digital Neural Network is produced by Hughes Semiconductor. This
device utilizes static CMOS memory internally. It contains 1024 weights, which
support 32 8-bit inputs connected to 32 internal nodes. The M1718 is TTL-
compatible with an 8-bit bus interface. A throughput of 100,000 patterns per
second is claimed by the manufacturer. The devices are gangable so that networks
of varying sizes can be created.

3.2.1.5 Optical Neural Computing Integrated Circuit
A prototype optical neural computing IC has been produced (Mitsubishi Electric

1992). The design, shown in figure 3.2-1, uses eight long and narrow Light
Emitting Diodes (LEDs) on top of an 8 x 8 array of photodetectors. Weighting is

LED Element
8 LED Array

j 64 Photodetector Array

=/ ddddddﬂd’%

/ Photodetector Array

/
GaAs Substrate

FIGURE 3.2-1. OPTICAL NEURAL COMPUTING INTEGRATED CIRCUIT

(Mitsubishi 1992) ‘

20-50

performed by adjusting the sensitivity of the detectors. This IC is fabricated
on a gallium arsenide (GaAs) substrate that measures 6 mm square. It learns at
a rate of 600 million connection updates per second.

3.2.1.6 Neural Accelerator Hardware

Neural accelerator hardware implements an NN on a printed circuit card that is
hosted on a computer system such as a PC. Neural accelerators use high-speed
Reduced Instruction Set Computer (RISC) processors, architecture, and other
supporting hardware to attain fast comnection rates, as compared to software—
implemented or NN ICs.

3.2.2 Design Considerations for Fuzzy Logic

In cases where a fuzzy logic solution matches the intended application, designers’
can achieve significant advantages. Using fuzzy logic, system designers can
realize lower development costs, superior features, and better end product
performance. Products can be brought to market faster and more cost-effectively.

There are considerations to be made in the choice of an architecture for a fuzzy
logic-based system. The proposed application can dictate the hardware required.
Conventional Central Processing Units (CPUs) are sometimes used where execution
speed is not a factor. Where speed is a factor, the choice of the CPU can have
significant impact on system performance.

A CPU architecture containing a large register file is helpful. This 1is
necessary if all terms are to exist within the CPU. A CPU containing a large
register file greatly reduces the number of external memory accesses that are
required during program execution.

Applications vary widely with respect to the number of rules required and the
speed of the CPU which executes those rules. Some speed-critical applications
may require only a few rules, but a very fast CPU to keep in time with the
controlled system. A high-speed motor control application is one example where
speed is essential, but the number of rules applied can be limited.

Automotive applications require high speed and can be complex. Antilock braking
systems, climate control, and transmission control are examples of applications
that may be suited to the use of fuzzy logic. High-speed applications will
require the use of special fuzzy logic ICs. These ICs may be fast enough to
control several tasks simultaneously. Fuzzy controllers execute rules 10 to 100
times faster than general purpose CPUs (Legg 1993).

3.2.2.1 Fuzzy Coprocessors

Fuzzy Coprocessors and "engines" are also produced by a number of manufacturers.
Fuzzy Coprocessors are intended to interface to various microprocessors so that
fuzzy instructions can be performed rapidly, by a device tailored for them. They
execute instructions specifically targeted for them out of the CPU instruction
stream. Fuzzy engines are designed to be used as a peripheral device within a
CPU, or as a basic building block for an Application Specific Integrated Circuit
(ASIC). The ASIC elements can be combined to form various designs:

20-51

. ASICs with fuzzy capability and custom logic
. ASICs that combine fuzzy processing on the same IC as a conventional CPU
. ASICs that are designed to function as coprocessors

Some of the fuzzy engines and coprocessors that are under development or are in
production are discussed in the following sections.

3.2.2.1.1 FC110 Fuzzy Processor

The FC110 Fuzzy Processor was developed by Togai Infralogic, Incorporated. The
FC110 is called an "8-bit RISC processor optimized for fuzzy logic." It is
designed for processing large rule bases and allows user—defined membership
functions (see section 2.3) with arbitrary shapes (Legg 1993).

3.2.2.1.2 SAE 81C99 Coprocessor

The SAE 81C99 coprocessor was developed by Siemens Corporation. Its features
include an 8-bit interface to a microcontroller. Peak performance of this device
is given at 7.9 million rules per second at a clock speed of 20 MHz. It has 256
inputs, 64 outputs, and handles up to 16,384 rules (Shear 1993).

3.2.2.1.3 VY86C570 Fuzzy Computational Accelerator

The VY86C570 Fuzzy Computational Accelerator (FCA) was developed by Very Large
Scale Integration (VLSI) Technology. It can execute in excess of 850,000 fuzzy
rule evaluations per second when using two inputs, one output, and 40 rules. It
is built around the Togai Infralogic VY86C500 fuzzy processor core.

This device has a 12-bit data path, 256 x 12-bit data registers, and addresses
up to 64k x 12 bits of external rule memory. It also can be used as a core
design for custom ICs where fuzzy computational capabilities are desired. The
VY86C570A has built—in self-test capability (Weiss 1993).

3.2.2.1.4 NLX230 Fuzzy Microcontroller

The NLX230 fuzzy microcontroller is produced by American NeuralLogix. It is
fabricated using 1.25-micron CMOS technology and can execute up to 30 million
rules per second. The rule memory is 24 bits wide and can be programmed with up
to 64 rules which are shared among the outputs (Ziemacki 1993).

3.3 Artificial Intelligence Development Systems and Tools

3.3.1 Fuzzy Development Systems

Systems developed using fuzzy logic concepts have used both conventional CPUs and
special purpose fuzzy logic processors. For many applications, the general
purpose CPU will suffice for the task at hand. For most current fuzzy logic

applications, an 8-bit CPU is adequate. In more demanding applications, the use
of a fuzzy logic processor is required (Legg 1993).

20-52

For developers of fuzzy systems, a number of tools are available:

. Assembly language code on a general purpose CPU

. Special fuzzy assembly code for fuzzy controllers
. C code generating tools

. Complete development environments

Speed requirements and system complexity dictate the hardware that is required.
The use of a high level language, such as C, will slow down the execution speed
when compared to a system developed using assembly code. For simpler
applications, fuzzy controllers are not required and the system may be
implemented by the use of look-up tables. Where rule execution speed is the
primary requirement, high-speed fuzzy controllers are required. Between these

two extremes, developers use general purpose CPUs with fuzzy logic software (Legg
1993).

The number of degrees of membership (see section 2.3) can be the determining
factor when CPU resolution is considered. Complexity of the system (number of
rules) is a determining factor when speed is considered.

As with any digital system development, tools should be a major consideration for
the choice of IC used. Tools vary in capability, price, and user—friendliness.
Tools are used not only in the development phase, but in the debug and testing
phases as well. Some of the advantages tools can provide include (Legg 1993):

. Graphical interfaces to simplify editing and creation of membership
functions

. Graphical display of controlled surface

. Tuning of a system while it is active

Tuning a fuzzy system empirically does not provide enough assurance of system
stability. Research is addressing this issue.

Development environments are available for fuzzy logic-based systems and provide
system engineers with necessary tools. Tools exist for each level of debugging,
including data tracing, analysis, and simulation. If the inference unit does not
perform as expected, these tools can assist the user in locating bugs in the

source code.

Different target processors are supported by a number of development
environments. Some development environments contain a full compliment of tools
to take the design from inception to completion, and are combined into a single
software product. These are referred to as Integrated Development Environments.

As growth in this field continues, standard fuzzy language code and portability
among the various processors will become issues. Tools that provide users with
an open architecture enviromment allow flexibility in their use. Tools can
provide the user with data formats for membership functions, inference rules,
jinference units, and other fuzzy inference parameters.

20-53

3.3.1.1 TILShell®

One development environment available to designers is a graphical, object-based
environment called TILShell®. This shell allows the user to define the
production rules and membership functions. Three compilers are provided,
depending on the choice of target system. These compilers allow code to be
produced as C source code, microprocessor specific code, or machine code for the
FC110 Digital Fuzzy Processor (Conner 1993).

3.3.1.2 Fuzzy Inference Development Environment

The Fuzzy Inference Development Environment (FIDE) is a tool based on Fuzzy
Inference Language (FIL). FIL is a non-sequential language with English-like
statements that incorporates inference methods and a variety of logic operators
for different applications. FIDE includes a graphic editor for describing
membership functions. The editor converts the graph into a segment of code. The
FIDE compiler translates the source code into the standard data structure.

Debug tools, such as a trace facility, graphical analyzer, and simulation, are
also provided. Once a processor has been selected for implementation, the
corresponding real-time code generator can be used for that processor. If the
unit is implemented in software, the run—time library, when linked into a C
program, performs the fuzzy inference computation (Aptronix! 1992).

3.3.2 Fuzzy Logic for Digital Signal Processors

Systems can be designed using a fuzzy development package built around the
Digital Signal Processor (DSP). This allows the features of the fuzzy system
environment to be utilized in the DSP field for greater flexibility in particular
applications. The development software combines fuzzy logic programming and
allows DSP techniques to be programmed for the same hardware. Such a tool is
available for the PC environment (Texas Instruments Literature 1994).

3.3.3 Neural Network Development Tools

NNs typically are not standalone devices. They generally are used as part of a
larger system. A process passes data to the NN inputs. The NN then performs its
operation and passes the output data back to the process. This is true for both
software— and hardware—-based NNs.

Designers need to keep in mind some potential drawbacks when using NNs.

There may not exist a satisfactory solution for a given problem if data are
insufficient or if there is no learnable function. The problem must be
definable. Training data need to be available and sufficient for the defined
problem.

Proving consistency, completeness, and correctness for an NN may be difficult.
The outputs of NNs depend on a high number of calculations. These calculations
are based on input patterns and weights. The origin of the weights may be
difficult to explain, since they are the result of a complex machine learning
procedure.

20-54

-NNs can be expensive to train. The training expense is due to the need to

collect, study, and exercise the data. Additionally, the developer will need to
manipulate parameters until the NN response is acceptable.

For NNs implemented using microprocessors, small increases in the number of nodes
required cause large increases in execution time. As a rule of thumb, the
execution time is roughly the square of the number of nodes. A microprocessor
that works for a small number of nodes may not meet the required response time
where the number of nodes is larger (Hammerstrom 1993).

Developers of NNs have the option of using a software-implemented NN or an NN
hardware IC. Hardware devices are a relatively recent development and are
generally expensive. However, if a software solution is too slow, a hardware NN
may be required.

NN developers need to weigh the characteristics, requirements, and drawbacks of
this technology carefully. Computational needs should be considered, including
system throughput and the availability of training data. Sufficient data must
be available to give a good representation of the behavior to be modeled.

If NNs are to be used in critical applications, other factors need to be
considered. Hammerstrom (1993) sums up the design concerns effectively when he
states:

They are like statistics in their aggregate behavior, their
usefulness, and their effectiveness in applications that lack other
solutions and tolerate imprecision. They may be unsuitable when
safety is critical or risks are to be avoided, unless they can be
validated with all possible input values.

A number of manufacturers are marketing tools to assist in the design of NNs.

NN development tools support software driven NNs and hardware NNs. Based on the
design considerations, the developer chooses one of the two methods. Tools run
on various systems, including DOS, Macintosh, Unix, VMS, and 0S/2. Hammerstrom
(1993) lists a variety of currently available development tools for both software-
and hardware-based NN design.

3.3.4 Neural Network and Fuzzy Logic Combined System

An NN and fuzzy logic system have been combined in a product called NeuFuz4,
which generates code for the COP8 uC (Shear 1993). The development package uses
an NN to assist in building fuzzy logic applications, since generating membership
functions and fuzzy rules can be difficult.

Input and output data and other application parameters are used to create the
fuzzy logic rules and membership sets. NN weights are adjusted until the outputs
of the network closely match the outputs of the training set, given the same set
of inputs. The final weights represent behavior that can be translated into
rules and membership functions (Legg 1993). The rules are then examined by a
rule verifier and processed by an optimizer. When the developer is satisfied
with the system simulation, machine code for the host processor can be generated.

20-55

The NeuFuz4 neural tool uses supervised learning. Also under development is a
similar tool that uses unsupervised learning. It is anticipated that NN
development tools used in training the fuzzy system will migrate into the fuzzy
controller (Legg 1993).

20-56

4, ARTIFICIAL INTELLIGENCE AND EXPERT SYSTEM APPLICATIONS

Much research has been performed in the field of AI. Numerous studies have been
funded or performed by government laboratories and agencies, as well as private
industry and universities. This section examines some of the aviation-related
studies, particularly systems proposed for airborne application. Al-based
aircraft monitoring and diagnostic systems are also examined. This section will
identify some of the design considerations for such applications.

4.1 Design Considerations for Avionic Applications

Designers of ESs must answer many questions during the course of development.
These questions consider high level issues, such as system requirements, and
black box issues, such as the type of system, inputs, processes, outputs, and
interfaces. Many minute details must also be examined to implement the system.

4.1.1 Architecture Considerations

Avionic subsystems for advanced military aircraft will provide a host of complex
functionality. The high number of sensors on modern aircraft requires that data
management be given careful consideration. Assimilation of the wealth of data
available presents a difficult task for any crew. Information needs to be
compressed and sorted, presenting meaningful and necessary results to the crew.
This function will be computationally intensive, requiring reliable and high-
throughput processing. Al-based systems are targeted to help reduce the amount
of information requiring the pilot's attention.

When designing an ES, one must choose an architecture consistent with the
requirements. The influence of timing considerations on the architecture and
hardware selected for the development task will need to be determined. The
system timing requirements and architecture choice influence the implementation.
Designers are faced with many decisions, including whether to choose a single CPU
or a multi-processor configuration; conventional, RISC, or special purpose CPUs;
message passing schemes; memory design; operating system; and numerous other
related issues.

4.1.2 Timing Considerations

Timing is another example of a necessary, but important, detail when designing
an ES for quick response or real-time operation. Following are some of the
timing issues designers need to be aware of, or implement in their ESs, according
to Ng (1988):

. Demonstrating that under any given scenario the system will provide data
when desired, in a timely manner.

. Addressing response latency. Algorithms, such as those that perform LISP
garbage collection, should be formulated with a time-sliced version to
reduce response latency.

20~-57

. Bounding problems so that the best reasonable solution under the
circumstances can be identified.

. Eliminating unnecessary overhead from interactive development
environments.

. Matching the processor architecture to the High-Level Language.

. Where higher speeds are required, using parallel algorithms, RISC

processors, or other special hardware.
4.2 Flight Management Expert System

As aircraft systems become increasingly complex, the pilot’s mental and physical
workload will increase beyond realistic limits. Expert flight management systems
can assist decision-making processes for the pilot. However, problems can arise
in acquiring, structuring, and applying the knowledge base needed by an expert
flight management system capable of operating in a dynamic domain.

The Emergency Procedures Expert System (EPES) is a decision aid system suited for
flight management applications. The goal of the system is to provide pilot
assistance during emergency situations while keeping the pilot in the loop.
During normal operations, the EPES would remain unseen to the pilot, but would
monitor the state of the aircraft constantly. If an emergency were to arise, the
EPES would initiate steps to correct the emergency, inform the pilot of the
action, and allow the pilot to override the action, if desired.

The EPES is comprised of an environmental simulation and an ES. The
environmental simulation models the behavior of the aircraft and provides a
display panel with realistic dials and gauges. The ES contains a special purpose
inference engine and the knowledge base.

A rule/goal paradigm for managing emergencies forms the basis for the knowledge
base. Data—driven, condition—action rules are triggered by changes in the state
of the knowledge base. Corrective actions are defined by goals that become
active when one or more emergencies arise.

The EPES is intended to represent the knowledge of an experienced pilot in
handling multiple emergencies. A top—down approach to knowledge acquisition was
used in the development process. The knowledge base was developed incrementally
over time at increasing levels of detail. The knowledge base was developed as
a collaboration between the knowledge engineer and pilot. The knowledge engineer
gathered basic emergency information from the flight manual. However, to create
a system that performed at an expert level, the knowledge of an experienced pilot
was needed.

During knowledge base development for EPES, a number of lessons were learned:

. Although emergency procedures were described separately, often they were
interrelated.

20-58

. Rules and goals were developed more effectively in parallel and in an
iterative cycle.

. The structured text representational format allowed the knowledge engineer
to isolate portions of the knowledge base that were incomplete. Specific
questions could be generated to obtain the missing knowledge and to
minimize interview time.

. Simulation exercises facilitated pilot feedback and aided in capturing
knowledge that otherwise would have been difficult to obtain.

Although these processes were used in a flight management domain, this approach
to knowledge base development could be applicable to similar domains with dynamic
environments (Anderson, et al. 1985).

4.3 Navigation Systems

The Knowledge—-Based AutoPilot (KBAP) is a NASA/RAE cooperative program
established to develop and validate a real-time KBAP. The program investigates
implementation and validation issues. The KBAP "provides a simple well defined
yet real problem within which to explore, develop, and demonstrate real—-time
knowledge-based system concepts and validation and verification techniques for
mission-critical systems" (Daysh, et al. 1991).

A prototype autopilot was developed using CLIPS, but was found to be too slow for
real-time flight control applications: The RAE developed FLEX (a library of
FORTRAN 77 subroutines that allow FORTRAN programs to interface with ESs) and has
applied it to this application with much improved response time. One of the
immediate goals for improving the response time is to use the rules produced
under CLIPS and implement them under FLEX. The long-term goal is to apply the
conventional software verification and validation (V&V) methodology used for
flight critical control systems to the KBAP (Daysh, et al. 1991).

4.4 Decision Support Systems

Curran (1992) states that AI will likely be employed in the future to monitor and
assist the pilot. Some of the proposed decision support systems are examined in
this section.

4.4.1 Cockpit Assistant System

The CASSY is a knowledge-based computer aid for flight-planning tasks. The
purpose of this system is to support the pilot in complex planning and decision
operations during situation assessment and flight replanning operations. This
system has been implemented in flight simulators for single pilot and dual pilot
testing. Research is being conducted by Dornier and the University of the German
Armed Forces in Munich.

Many accidents in highly automated cockpits have been attributed to human error.

The intent of CASSY is to use AI to reduce the number of accidents attributed to
human error. CASSY functions like an expert copilot to recommend flight plan

20-59

revisions, to provide warning if the pilot deviates from ATC clearances, and to
monitor aircraft systems.

CASSY monitors the aircraft systems to supply the air crew with warnings and
advice. It performs situation assessment and planning activities using a
knowledge base of ATC rules, airways, instrument approaches, and instrument
procedures. CASSY uses voice recognition technology to communicate with the
pilot and data link to communicate with ATC. Future plans include providing ATC
clearances directly to the pilot and CASSY via data link.

When a pilot deviates from the approved flight plan, CASSY infers whether the
deviation was intentional or accidental. The pilot is given verbal advice when
a deviation is beyond the prescribed tolerance.

The results of simulator tests have been encouraging. It is the intent of CASSY
to simplify the decision-making process, yet keep the pilot in the decision loop.
During simulator trials, pilots using CASSY responded to ATC warnings within 5
seconds. Pilots without the system took from 15 to 95 seconds to evaluate the
situation and respond.

System tests have been ongoing and future tests will be performed on aircraft.
CASSY could be operational within 10 years (Nordwall 1992 and Prevot, Onken, and
Dudek 1991).

4.4,2 Diverter System

The Diverter System is an AI application that provides pilots with information
for making in-flight diversion decisions. In August 1990, a report describing
the prototype system was prepared for NASA. The goal of the Diverter System is
to use AI and algorithm—based decision aiding to replicate a pilot’'s information
processing and application of logic principles during in-flight diversion
planning. The Diverter System is designed to resemble closely the cognitive and
information processing functions used by pilots during diversion functions.

The Diverter System is designed to be "invisible,"” although continuously active,
until a situation arises that requires planning, display, and execution of a

diversion. Background activity consists of constant database updates from
onboard systems, as well as from ground-based systems through data link
communications. Data are not displayed unless the system is activated.

Activation is accomplished either by the pilot or by the Diverter System. A menu
option of the flight data Control Display Unit (CDU) allows the pilot to activate
the Diverter System. Automatic activation occurs when the reason for diversion
is due to a change in onboard aircraft system status or information from data
link communications from ground-based sources. Activation annunciation takes
place through the aircraft’s fault/system status annunciation system.

A functional flow analysis was developed by querying pilots (domain experts) to
obtain the methods and logic used during diversion planning. This information
was augmented with information from sources such as Federal Aviation Regulations
(FARs) and the Airmen’s Information Manual (AIM).

20-60

The Diverter prototype is capable of combining available knowledge and using
built-in knowledge to determine the best combination of runway, airfield, and
route. The resultant route is then suggested to the pilot. In an actual system,
runway, airfield, and aircraft attributes would be stored onboard, while
information, such as weather and navigation aid status, would be obtained through
data link or pilot input. The current Diverter System prototype did not attempt
to define how this information transfer would take place. Also, the form in
which information would be presented was not defined.

4.4.3 Flight-Plan Interactive Negotiation and Decision—Aiding System

The Flight—Plan Interactive Negotiation and Decision-Aiding System for Enroute
Rerouting (FINDER) is being developed by Sextant Avionics and will be tested by
Air France pilots when completed. FINDER is an interactive system that uses ES
techniques, as well as conventional code written in C and C++.

FINDER’s purpose is to suggest a limited number of satisfactory solutions for
crew members facing a diversion situation (FINDER 1) or, more genefally, an
enroute replanning situation (FINDER 2). The system focuses on managing existing
data and making decisions that aid the pilot. Following is information that
FINDER will use to provide pilot assistance (Bittermann, et al. 1994):

. Fuel capacity

. Weather forecasts

. Ground facilities

. Regulations

. Passenger-based constraints

The problem is clearly stated here (Bittermann, et al. 1992):

...when pilots are confronted with diversion situations, they must
find a solution which theoretically integrates all the parameters
within a limited time and is based solely on their personal
experience. Their attention is mainly concentrated on the critical
considerations that may affect the aircraft’s survival (fuel,
weather) .

The system will also, upon request, give reasons for a particular selection and
allow modification by pilot/system dialog.

it is assumed that FINDER will have data link connections available with the
airline owner, ATC, and possible destination airports. In addition, information
is necessary from the Central Maintenance System and the Electronic Library
System. FINDER will also investigate the impact of the evolving negotiation
process between the crew and ATC.

A diversion is generated by FINDER using a two—phase decision process. Figure
4 .4-1 shows how the process works.

The first phase, Context Analysis, examines the environment as completely as
possible. This includes the condition of the aircraft and facts about the

possible destination airports.

20-61

rContext Analysis)

Destination Analysis Aircraft Systems Assessment

o~ o

Diversion Type ldentification

. _/

(o

ivision Proposal

Y

> Alternate Airports Preselection
> Detailed Examination of Preseiected Airports

Y

Proposal and Dialog with Pilot

FIGURE 4.4-1. DIVERSION PROPOSAL GENERATION
(Bittermann, et al. 1992)

The second phase, Diversion Proposal, starts with the type of action determined
by the Context Analysis phase and seeks to arrive at a satisfactory solution in
light of all known facts. The first stage of the Diversion Proposal selects a
number of possible destination airports, based on the destination analysis
information for those airports. Using optimization heuristics, the optimum route
is selected for the possible destination airports.

The last stage of this phase is the destination airport proposal and dialog with
the pilot. A Graphical User Interface (GUI) is used for the pilot-system
interface. A list of proposed airports is displayed by the GUI. If the pilot
selects one of the proposed airports, the system will handle the necessary
interface with ATC via the data link.

If the pilot does not select one of the airports, he or she can modify the
parameters used in decision making. This will cause the system to regenerate the
list of proposed airports in light of these new parameters. This new list will
then be displayed for selection or further modification by the pilot.

The concept of diversion assistance during the FINDER 1 project led to the FINDER
2 project. FINDER 2 is devoted to developing an enhanced real-time demonstrator
with extended replanning features (avoidance and optimization) and an enriched
simulation environment (weather events, predictions and reports, regulated areas,
and ATC and operation constraints).

20-62

The situation assessment module has been extended to overall environment and
aircraft monitoring. It identifies potential problems, proposes corrective
actions, and provides the crew with a comprehensive picture of the context
evolution.

Each solution generated is maintained in association with the context and
aircraft evolution (i.e., if an unaccessible airport becomes available while in
diversion mode, the previously proposed solutions are automatically updated).

The pilot-system interface is hosted by an enhanced Electronic Library System
Pilot Access Terminal. The logic of the dialog has been defined according to
cognitive modelling procedures. The software architecture takes advantage of
concurrency between the modules of the system’s kernel (mainly situation
assessment, replanning, and dialog). Human-like explanations are continually
provided by the system on the pilot’s request.

4.4.4 Pilot's Associate Program

A significant amount of aviation-related AI research in recent years has
originated from programs funded by the U.S. Air Force (USAF) Aeronautical Systems
Division. One such program, Pave Pace, will investigate and validate many areas
of new technology, including AI algorithms, to assist in mission decision making
and NN parallel-processing capability for adaptive learning systems (Curran
1992).

The USAF and the ARPA awarded a contract to a team from Lockheed and a team from
McDonnell Douglas Corporation. This program, the Pilot’'s Associate (PA), has the
goals of defining, designing, and demonstrating the application of machine
intelligence to the assistance of advanced fighter aircraft pilots (Leavitt and
Smith 1989). The Lockheed team was awarded a contract to develop an ES that
tailored its response to the pilot’s particular style of flying.

This particular system had technically difficult constraints. It had to react
to inputs and communicate with the pilot rapidly. In additionm, the knowledge
base was designed to receive inputs from a variety of systems. The construction
of the knowledge base relied on inputs from human factors experts, psychologists,
engineers, and pilots.

One goal of the PA program is to have all of the software running on an avionic
processor using a real-time procedural language, such as C or Ada (Rouse, Geddes,
and Hammer 1990).

4.4.5 Rotorcraft Pilot’'s Associate Program

The Rotorcraft Pilot’s Associate (RPA), a program sponsored by the U.S. Army, has
similar goals to the PA program. The Army requested proposals from industry to
develop a system that would alleviate the workload of rotorcraft combat pilots.
The RPA proposes the use of a knowledge-based system to draw upon the knowledge
of experts with prior experience in this discipline.

During the Vietnam era, a number of lessons were learned about combat avionics.
It was found that when fighter aircraft and rotorcraft approached a combat zone,

20-63

pilots were shutting down some systems. The systems remaining "on" were those
that worked automatically and reliably, yet kept the pilot fully aware of system
status. These systems were advisory in nature and the pilot always was in
command of the system.

The RPA program follows this design trend. The system monitors the rotorcraft
and provides situation awareness. If an unknown target is encountered, the
system suggests the correct response. The pilot can choose to accept the
response or reject it. If the response is accepted, the system implements it
automatically. The purpose of this system is to reduce cockpit workload and free
the pilot to concentrate on tasks necessary for combat survival. Figure 4.4-2
identifies the basic functions included in the RPA.

Advanced MEP

Communications

Cockpit

Navigation - - - - - = l

| Proactive | |

Planner | |

Integrated Airborne |

Survival Equipment | | External Cockpi.t 'l Advanced| P |
| Situation Information || Displays [‘

| Assessment Manager | and L},

Pilotage | || Controls 0 |

T

l Internal Reactive |

Flight Controls | Situation Planner A |

I Assessment |

4 !

Targeting

Weapons

T -

FIGURE 4.4-2. ROTORCRAFT PILOT’S ASSOCIATE DEMONSTRATOR CONCEPT
(Harvey 1993)

The knowledge base will require detailed study and definition of the decisions
that a pilot must make in combat aviation. In addition, difficult issues, such ‘

20-64

as deciding which functions to automate and which are best left to the pilot,
will need to be faced. The growth of AI technology makes the RPA project viable
for future combat rotorcraft (Harvey 1993).

4.5 Intelligent Monitoring and Diagnostic Systems

As aircraft systems become more complex, difficulties have increased for system
maintenance tasks. False alarms consume as much as 50 percent of maintenance
resources, while troubleshooting actions take as much as 50 percent of total

labor hours spent for repair. Accurate and efficient diagnostic systems are
needed.

Developing rule bases for complex system diagnostics is difficult. Few experts
possess ample understanding of new systems to provide adequate diagnostic rules.
If multiple experts are used, it is difficult to gain consensus about the rules.
These problems may be addressed by using rules based on causal relationships
between failures and test information and by developing rules from examples of
actual or simulated failures. However, providing sufficient examples to produce
adequate fault trees may be impractical.

ESs are being developed for a number of aspects of avionics diagnostic testing.
ESs monitor the results of Built-In Test (BIT) applications to provide better
localization capability. Performance monitoring and fault locating software
determine the cause of anomalies as they occur. In the future, software will be
integrated into onboard maintenance systems to allow online diagnosis,
reconfiguration, and repair.

Another application of ESs is production of Interactive Electronic Technical
Manuals (IETMs) and Portable Maintenance Aids (PMAs). IETMs and PMAs combine
online technical information with maintenance facilities.

ESs are beginning to be used in avionics testing as test executives for
intelligent Automatic Test Equipment (ATE). The ATE systems' capabilities are
as follows:

. Learn from experience

. Devise and execute test strategies dynamically
. Correct errors

. Explain and validate test choices

4.5.1 Rotorcraft Transmission Health Monitoring System

As commercial and military aircraft age, there is increased emphasis on
maintenance and safety issues. One important problem in this area is predicting
impending faults in helicopter transmissions. In new aircraft, advanced
diagnostics in which continuously monitored volumes of data must be reduced to
provide meaningful information to pilots or ground crews also are important.

The Office of Naval Research (ONR) has initiated an aircraft health monitoring
program that is investigating the use of NNs in mechanical diagnostic systems.
Reduced complexity, speed, and cost were cited as advantages of using NNs in
diagnostic systems. Reduced complexity would increase the reliability of a

20-65

diagnostic system. NNs will allow real-time diagnostics to be performed onboard
the aircraft. These diagnostics will fuse data from the power train, drive
train, structure, rotor system, and oil systems. As ICs to support this
technology become mass produced, the cost of this technology will be increasingly
affordable.

In June 1992, ONR contractors began work on an NN application to detect
helicopter gearbox faults. Phase 1 has concentrated on detection and feature
extraction. Subsequent phases of the ONR program will focus on classification,
network design, and potential migration to a commercial product.

Preliminary ONR reports indicate a need for more and higher quality data with
both fault and normal conditions. In the future, implementation of a data fusion
approach for health monitoring will involve ESs, blackboards, NNs, and other AI
technologies. Research still is needed in areas such as smart sensors, improved
system-state recording, advanced algorithms, and faster data sampling and
processing. Programs such as the ONR research in transmission diagnosis can
enhance safety by using AI to improve health and usage monitoring (Rock, Malkoff,
and Stewart 1993).

4.5.2 Technical Expert Aircraft Maintenance System

The complexity of modern combat aircraft avionic systems makes diagnosis and
repair of these systems a difficult process. Knowledge of the aircraft, as well
as a broad base of repair experience, is needed. Faults that occur during
initial testing of newly manufactured aircraft are especially difficult to
isolate, since the assumption that a failed system once worked correctly cannot
be made. Typically, after each test flight, a team of mechanics fixes any
problems that were discovered. The team of mechanics is supported by a staff of
engineers who are specialists for each specific system.

The Technical Expert Aircraft Maintenance System (TEAMS), developed by McDonnell
Aircraft Company, is an interactive ES that supports problem diagnosis in new
aircraft. Using an ES in fault diagnosis supports the mechanic’s diagnostic
decision-making process and reduces the need for engineering support.

Development of ES technology applied to maintenance systems occurred in several
stages. The first stage involved an evaluation of the technology and its
expected impact on the aircraft delivery process. An ES was developed for the
Communication, Navigation, and Identification (CNI) suite of systems. During a
3-month study period designed to assess the impact of the ES, it was determined
that the CNI ES could result in a significant reduction in diagnostic time. The
study also showed a reduction in the number of test flights required to sell an
aircraft and a reduction in the number of spares required to be kept in
inventory.

During stage 2, additional ESs were developed based on the results of stage 1.
Flight controls and radar were selected for stage 2 because they produce the
greatest number of flight faults in the avionic systems and isolation of failures

in these systems requires considerable engineering support. This ES was
developed using CLIPS. Stage 3 involved expanding the ES concept to other
programs.

20-66

During stage 2, additional ESs were developed based on the results of stage 1.
Flight controls and radar were selected for stage 2 because they produce the
greatest number of flight faults in the avionic systems and isolation of failures
in these systems requires considerable engineering support. This ES was
developed using CLIPS. Stage 3 involved expanding the ES concept to other
programs.

A number of approaches were used to involve the end user in the project and to
encourage user acceptance of TEAMS. A training course was developed as soon as
the CNI system was complete. The course focused on basic operation of the system
and using the system in a simulated environment to find flight faults. A comment
feature was added to TEAMS. This feature allowed users to enter a remark at any
time during their use of the ES. The comment feature provided a valuable source
of feedback. When comments were made, the designers were contacted for
clarification (Lischke and Meyer 1992).

20-67/68

5. CERTIFICATION CONSIDERATIONS FOR ARTIFICIAIL INTELLIGENCE

Depending on the intended use of a software-based system, incorrect software can

result in significant safety or economic impacts. When safety issues are a
primary consideration, a software~based system may be required to undergo
certification corresponding to its application and criticality. Critical

applications of software require rigorous attention to methods for reducing the
probability of failure and ensuring the safety of those potentially affected by
the failure of such software. This is no less true when applied to AI-based
software. A "bug" in the Al-based software in a research lab may have minimal
effects. However, a bug in the ES used to control stock market buying and
selling or in the ES used to diagnose and monitor nuclear power generation
systems may have far-reaching consequences.

For airborne software, certification is the process of obtaining FAA approval for
the design, manufacture, and/or sale of a part, subsystem, system, or aircraft
by establishing that it complies with applicable government regulations. The
purpose of certification is to demonstrate and record that the total aircraft is
suitable and safe for use (Elwell, et al. 1991). Key to certification is proving
the software to be reliable and high in quality by a thorough examination of the
methods used in designing, coding, testing, and life cycle planning.

Much research has taken place related to verification, validation, and testing
of AI-based ESs. This section presents some of the methods and considerations
relating to this discipline for Al-based software. A background of V&V
techniques for conventional software is provided. Additionally, this section
highlights some of the concerns relating to the proposed use of AI technology in
the cockpit. :

5.1 Certification and Federal Aviation Regulations

When a major design effort is required to develop a system, the integrity of the
aircraft into which it will be installed is in question. Thus, one of two type
certification processes must be followed to receive a certificate. For totally
new designs, or changes that are so extensive as to require a complete
reinvestigation of the design, the developer must follow the process required to
obtain a Type Certificate (TC) for the aircraft. For major changes (as defined
in FAR Part 21, section 93) to a system previously approved under a TC, the
developer can follow a simpler process to obtain a Supplemental Type Certificate
(STC).

The Technical Standing Order (TSO) authorization method of approving components
was developed to allow manufacturers to substitute equivalent components "off-
the-shelf" without jeopardizing the existing TC. Since a TSO authorization
request must be processed within 30 days and does not require integration
testing, manufacturers use this method rather than Type Certification whenever
possible.

20-69

In the days of simpler aircraft design, TSO authorizations were adequate. Now,
however, digital avionic systems are more complex and require elaborate testing
procedures. To improve the TSO approval process, Aircraft Certification Offices
(ACOs) are becoming more involved in approving new digital systems. They are
reviewing V&V plans for TSO packages and are working more closely with the
manufacturers. The ACOs are suggesting that system integration test plans be
required for substitutions in integrated digital systems.

As avionic systems become more complex, the manufacturer must ensure that the
system will function as intended within 1its operating environment.
Manufacturers’ validation facilities will play a major role in establishing the
requirements for integration testing, since the functions of digital avionic
systems will be simulated there. The certification requirements will expand for
such systems to reflect the FAA's concern that the systems safely perform their
functions once they are installed in an aircraft.

The system to be certificated can be simple or complex. The FARs stipulate which
process must be followed in each case. Although the manufacturer may refer to
the FARs to decide which approval should be sought, often a Certification
Engineer (CE) recommends which application the manufacturer should submit. The
authority for determining whether a change constitutes a modification or a
redesign, and whether a redesign is minor or major, rests with the ACO.

5.2 Certification Guidelines

In general, to show compliance with the FARs, a system or component is subjected
to environmental tests, software tests, failure analyses, and other testing, as
deemed necessary. The FAA relies on the manufacturer to conduct the testing.
If the FAA approves new tests, the manufacturer must comply with them. These
tests are identified in guidelines adopted by the FAA. Organizations such as
Aeronautical Radio, Incorporated (ARINC), Engineering Society for Advancing
Mobility Land Sea Air and Space (SAE), and Requirements and Technical Concepts
for Aviation (RTCA) produce such guidelines. Some guidelines which may be
applied to Al-based systems are identified below. Further details of the
certification process can be found in DOT/FAA/CT-91/19, "Avionic Data Bus
Integration Technology."

5.2.1 Hardware Guidelines

In the past, to certificate an airplane, inspectors and engineers had to
understand avionics based on analog electronic systems driving mechanical,
pneumatic, and/or hydraulic systems. One of the currently used guidelines for
the certification of avionic hardware is RTCA/DO-160C, "Enviromnmental Conditions
and Test Procedures for Airborne Equipment." RTCA/DO-160C addresses the effects
of magnetic fields, voltage spikes, and induced voltages on electronic
components. Any airborne hardware is subject to its requirements. There are
also a number of other issues relating to hardware that influence the safety of
flight.

Another guideline is the SAE's Aerospace Recommended Practice (ARP) 1834. It

defines Fault and Failure Analysis (F/FA) techniques for digital hardware. Since
digital systems are fault prone, the FAA has decided that fault analysis should

20-70

be employed during the certification process. FAR Parts 23, 25, 27, and 29,
section 1309, and Advisory Circular (AC) 25.1309-1A express the need for fault
analysis and ARP1834 has provided a means for conducting such an analysis.

Today's digital systems are more complex than those for which the tests were
designed. Digital hardware complexity has increased to the point that
traditional design methods can no longer be used. Automated tools are required

for design, layout, and testing of complex ICs and circuit boards. According to
Keller (1992):

Some electronics systems themselves have attained a complexity level
such that traditional 1lab and flight testing methods cannot
realistically be extensive enough to show compliance to existing
requirements.

New guidelines, however, may be adopted in the future as a result of RTCA's
Special Committee (SC) 180, which is formulating design assurance guidance for
complex electronic hardware used in airborne systems (RTCA Paper No. 548-
93/5C180-18 1994).

5.2.2 Software Guidelines
This same explosive growth that occurred with digital hardware technology has
occurred in the software domain as well, to the extent that "the probability of

a hazardous error in software cannot be quantified" (Keller 1992).

Keller identifies three major issues relating to certification of software-based
systems:

. Method of compliance demonstration
. Determination of the rigor required to ensure software integrity
. Determination of the software contribution to systems hazards

A method of compliance demonstration commonly used by manufacturers to meet FAA
requirements is found in "Software Considerations in Airborne Systems and
Equipment Certification" (RTCA/DO-178B 1992). This document was prepared by SC
167 of RTCA and was adopted as an official guideline in FAA AC 20-115C. Since
software is generally too complex to test for errors, guidance is given in this
document on acceptable processes used for developing airborne software. The
software developer is required to be in compliance with this guideline from the
initial stages of development and must have the appropriate artifacts to
demonstrate the amount of development rigor (Keller 1992).

Determination of the rigor required to ensure software integrity is done in
concert with the participating ACO. RTCA/DO-178B defines five categories of
failure conditions, ranging from "Catastrophic”" to "No Effect." Associated with
each of these categories is a corresponding level, ranging from Level A through
Level E. Level A, the most critical level, is defined as:

Software whose anomalous behavior, as shown by the system safety
assessment process, would cause or contribute to a failure of system

20-71

function resulting in a catastrophic failure condition for the
aircraft.

Software that is determined to have no effect on the crew workload or the
operational capability of the aircraft is defined as Level E. Once the software
level determination is made, software at Level E is not subject to any additional
guidelines of RTCA/DO-178B. The remaining three levels, from Level D through
Level B, define software having an increasingly greater effect on flight safety.

RTCA/DO-~178B addresses guidelines for producing airborne software that will meet
airworthiness requirements. It addresses software life cycle processes, the
activities associated with those process objectives, and the evidence that shows
that the objectives have been met. It is a document that addresses all the
critical stages of software development.

5.2.3 Software Guidelines and Artificial Intelligence
5.2.3.1 RTCA/DO-178B

Existing certification guidelines were not designed with AI or knowledge-based
software in view. The unique characteristics associated with the development and
testing of Al-based software are not covered in RTCA/DO-178B, although AI has
been identified as a technology that may receive attention in a future revision
(DeWalt 1992). Manufacturers wishing to implement systems incorporating AI are,
therefore, faced with certain difficulties when considering the certification
process.

As an example, RTCA/DO-178B requires that algorithms be checked for accuracy if
they are classified at level A, B, or C. While ESs may contain algorithms, they
also contain knowledge bases which should be subjected to the same processes as
conventional software. Just as algorithms are checked for accuracy, knowledge
base accuracy also needs to be verified. For software criticality levels A or
B, this verification should be satisfied by independent verification. This may
be difficult for ESs, since domain experts are scarce and their knowledge can be
contradictory. In addition, eliciting, capturing, and representing knowledge
from domain experts can be a difficult task. Not even the expert can know if all
the relevant information has been embodied in the knowledge base. Acceptable
methods for knowledge base verification need to be addressed.

ESs are similar to advanced development tools, since there are few intermediate
levels when ESs are viewed from the requirements level through the executable
code level. While the number of products generated during the development of ESs
are few as compared with conventional software, the trend in conventional
software is to design systems at higher levels and reduce the number of steps in
the development process by using automated design tools. Regardless of the
number of development steps, tool qualification issues also need to be addressed,
whether for conventional or ES-based systems. These and other related topics
should receive coverage in a future revision of RTCA/D0O-178.

20-72

5.2.3.2 DOD-STD-2167A

DOD-STD-2167A establishes uniform requirements for software development over a
system’s life cycle. ES developers can face problems when compliance with DOD-
STD-2167A is required. The software development cycle described by DOD-STD-2167A
is not descriptive of the development process for ESs. The development process
for ESs is a much more iterative process than that of conventional software.
Also, the five phases of development are not independent and clear-cut, but
describe a knowledge acquisition process. To accommodate knowledge—based
systems, a new development cycle needs to be defined and incorporated into the
appropriate standards (Carlton 1987).

5.3 Artificial Intelligence Standards

Since AI is a relatively new technology, a lack of standardization exists.
Standards relating to AI are only beginning to emerge. This generates
difficulties, especially from the developer’'s perspective. Adherence to
standards can have many benefits for developers, including interoperability
through common interfaces, as well as product portability. Additionally, lower
overall life-cycle costs can be realized through increased reliability and
maintainability. Areas where standards could benefit the technology include
knowledge representation, ES shells, and AI language standardization.

5.4 Conventional Software Verification and Validation

This section examines techniques, methods, and issues relating to the V&V of
conventional software-based systems. A review of these issues is necessary to
provide the background and framework for the application of these techniques to
Al-based systems. Once the issues are understood for conventional software, they
can be applied to other types of systems and tailored for specific
characteristics of those systems.

Although this section deals with software issues, it is important to note that
the processes described in this section can and should be applied to hardware,
software, and systems. New techniques may be necessary for ensuring safety goals
for today’s highly integrated and complex systems. Each component, as well as
the total system, needs to be subjected to scrutiny that yields the required
assurance level. Today’'s highly integrated avionics, using silicon devices with
millions of transistors in a single package, require the application of V&V
techniques specifically designed for this level of complexity, just as ESs
require unique V&V techniques.

5.4.1 Verification and Validation

5.4.1.1 Verification

There is no exclusively correct set of software statements for implementing
solutions in software-based systems, since there are virtually an infinite number
of different ways to represent solutions to system problems. Since software

solutions are used in systems where failure can result in loss of life and
property, methods are needed to demonstrate that the particular software solution

20-73

chosen to solve a system problem is correct and safe. This is one of the
functions of the verification process.

According to the glossary of the Digital Systems Validation Handbook-Volume II,
verification is defined as:

The act of reviewing, inspecting, testing, checking, auditing, or
otherwise establishing and documenting whether or not items,
processes, services, or documents conform to specified requirements.

5.4.1.1.1 Verificationiand Documentation

One of the important ingredients in the process of verification is documentation.
According to Naser (1991), "Documentation creates a traceable and systematic
approach to the development of a product." Traceability is important since it
. demonstrates the flow and development of concepts and design elements from the
requirements documents through the final product.

When a system is well documented, it can be understood by knowledgeable persons
other than the developers. Persons other than the developers are often used in
the verification process to analyze the product from a different perspective.
This activity is referred to as Independent Verification and Validation (IV&V).

Problems in the development process often appear as the result of the transition
from one step to the next. Part of the verification process deals with
determining that a complete and accurate translation has been performed by the
developers.

A requirements document describes the system at the highest level. It goes
through many iterations of refinement during development. It also requires
maintenance throughout the product life cycle. '

Traceability depends on the completeness and accuracy of the requirements
document. The requirements document is viewed as a set of external performance
goals. Testing explicitly confirms that these product or system performance
goals can be met. Testing against the requirements is both desirable and
necessary (Naser 1991).

5.4.1.2 Validation
The Digital Systems Validation Handbook describes validation as:

Demonstration and authentication that a final product operates in
all modes and performs consistently and successfully under all
actual operational and environmental conditions founded upon
conformance to the applicable specifications.

Validation is performed on » system to ensure that the requirements and the end
product, operating in its intended environment, have a direct correspondence.
Validation is a process that is composed of a number of activities. The purpose
is to demonstrate that a piece of software is designed correctly and that it is
the correct or right design. The functionality, performance, and device

20-74

interface are given in the requirements document. If the product does not meet
these criteria, then the deficiency can be traced back to the cause through each
of the step-wise refinements of the development process.

One may deduce at this point that errors found in the validation phase are the
most costly to correct. Since development proceeds in a step-wise manner, the
correctness of each step is essential to avoiding mistakes that will ripple down
into the end product, where they are consequently discovered.

5.4.1.3 Aspects of Verification and Validation
5.4.1.3.1 Correctness

There are several different aspects of correctness that require examination.
These include functional, safety, user—interface, resource consumption, and
utility correctness. Consistency, completeness, and termination are also aspects
of correctness, but are examined separately.

5.4.1.3.1.1 Functional Correctness

Functional correctness is concerned with how a particular piece of software
behaves, based on various system inputs. This behavior is defined by the system
documentation. In general, it is not possible to test all input combinations
completely. Therefore, a number of techniques and rationales exist for
generating tests that are the most beneficial for demonstrating functional
correctness of the subject software. Test methods to demonstrate functional
correctness check to see that the program generates the correct system output for
any input. Testing of all cases is generally not possible; therefore, only
certain sets of test cases are examined. The preferred set of tests include
those that are most likely to occur in normal operation.

There are several methods used for test case selection, some of which follow:

. Cause—effect graphing - Consists of mapping the input and output paths,
where the conditions are expressed in Boolean form. Intermediate steps
are also shown, yielding an accurate representation of the level of
abstraction of the software.

. Boundary testing - A technique used to test input boundaries defined in
the software. Testing the response using inputs near the boundary
provides significant data on the correctness of the software.

. Attribute-based test case sélection - Requires that test cases are
selected based on software characteristics. For instance, a specific test
case may be designed for a complex part of the software, while a simpler
part may be passed over. Criticality, as well as program size, are
attributes used for test case selection.

. Random testing - A technique for test case selection. As the name

suggests, the method of selection for this technique is entirely random.
Using this method, no rationale is required for selection of test cases.

20-75

5.4.1.3.1.2 Safety Correctness

Safety correctness deals with showing that software never reaches a state that
poses a danger to man or machine. With the increasing complexity of systems,
this attribute may be easier to demonstrate than functional correctness.

Safety correctness testing is concerned with picking tests that are designed to
generate unsafe states in the software. Knowledge of the controlled device is
necessary to identify unsafe software states. Various combinations or sequences
of inputs are exercised while the response is examined for unsafe conditions.
5.4.1.3.1.3 User-Interface Correctness

User—interface correctness is concerned with the end-user and human factors
aspects of the software interface. Some of the human factors aspects that are
considered include ambiguity, correctness, and "user—friendliness."

5.4.1.3.1.4 Resource Consumption Correctness

Resource consumption correctness demonstrates that the software operates

efficiently within its environment. It focuses on performance issues, such as
general hardware architecture, disk utilization, communication channel bandwidth,
and meeting specified timing constraints. This method 1is essentially a

performance test to check whether or not a system operates efficiently for its
intended application.

5.4.1.3.1.5 Utility Correctness

Utility correctness focuses on the usefulness of the system. It considers
whether or not it is the right system, it does the right things, it does what the
customer wants, and it meets the system requirements.

5.4.1.3.2 Consistency

Consistency demonstrates that the software follows a predictable path. Two forms
of consistency are examined: external and internal. External consistency
demonstrates that when a particular event occurs, an associated routine is
exercised. External consistency also considers the user interface. The look and
feel should be consistent. Internal consistency involves showing that all parts
‘of an integrated software module are consistent.

5.4.1.3.3 Completeness

-

Completeness involves demonstrating that nothing is missing from the program.
Completeness seeks to demonstrate properties, such as the following:

. The software accepts and acts upon all data.
. The software generates all required outputs.
. The software performs all required actions.

20-76

There are no algorithms that can be exercised to demonstrate completeness.
Sufficient completeness should be demonstrated to show that the requirements are
satisfied.

5.4.1.3.4 Termination

Another aspect of correctness is the demonstration of termination. This
characteristic ensures that a program will always end. Demonstration of
termination is done by showing that all looping structures within the program
terminate (French and Hamilton 1992).

5.4.2 Verification and Validation Testing Phases

Testing is beneficial for several reasons:

. Both major and minor errors can be identified.
. Errors introduced into the system can be reduced.
. Confidence in the product can be increased.

This section discusses classes of testing performed on software, including static
and dynamic testing. Testing methods are also discussed.

5.4.2.1 Static Testing

While dynamic testing involves running the software in the target environment,
static testing involves analyzing the software by methods other than execution
of the code. Static testing is done either by software review or by using tools
to analyze the software. A detailed examination of the equations contained in
the software is performed, or other checks are made against the specification.

The static testing method is the most cost effective since it occurs early in the
development phase. As software development proceeds from the requirements phase
to the system test phase, the cost of fixing errors increases drastically.
Errors identified and corrected in the requirements phase have the smallest
impact on the overall development.

5.4.2.2 Dynamic Testing

Dynamic testing is testing of the software in its intended operational (target)
environment. Dynamic testing has two parts: system testing and unit/integration
testing. This testing method is the least cost effective since it is performed
later in the development phase. Errors identified and corrected in this phase
of testing have a larger impact on the overall development cost and schedule.
Detailed verification at the requirements phase can greatly reduce the amount of
rework that may otherwise be performed in later stages of the development
process.

5.4.2.2.1 Integration Testing
Integration testing is referred to as a "white box" testing technique (French and
Hamilton 1992). It is dynamic and focuses on Input/Output (I/0) response

classes. Integration testing can deal with multiple levels of abstraction,

20-77

whereas system testing deals with only one. This technique is concerned with the
correctness of the unit.

Integration testing depends on modularity of the software. Modularity implies
that the design and development process can be simplified by breaking a large and
complex task into smaller but more manageable pieces. Each piece can be handled
by a different person or group, and can, after thorough testing, be integrated
with the other pieces. Modularity is a benefit to verification in that when
changes are made, only the module that is changed needs to be verified.

5.4.2.2.2 System Test

The system test is the last test to be performed. It is the final step in the
development process. Demonstrating correctness at this stage does not require
knowledge of the internals of the Unit Under Test (UUT). It is simply treated
as a "black box." This black box is tested to see that the behavior it exhibits
is correct. The responses of the black box are based on the original
requirements that were established with the customer. The contents of the box
are, at this point, irrelevant and not the subject of any investigation.
Independent verification is desirable, since knowledge of the internals are
irrelevant during system test and may be a stumbling block to testers.

It is generally accepted that complete testing of software is not possible. This
is due to the fact that, for any given system, there are too many I/0 responses
to be tested. Complete testing of a system is not done, and, therefore, it is
unknown whether or not the software in the black box is completely correct.

In order to devise practical limits on the number of I/0 responses to be checked
during testing, the software in the black box can be divided into categories
based on the classification of the I/0 responses. These individual categories
can then be treated as separate units and tested as though each were its own
separate box. ‘

5.4.2.3 General Testing Methods

The three general methods of testing are prototyping, regression testing, and
IV&V. Prototyping involves building a scaled version of the real system. This
is then used to evaluate the operation of the system. Regression testing
involves testing older software that has undergone modification. It ensures that’
the modified portions of software do not affect other portions that were not
changed. IV&V is a testing method that calls for an organization not involved
in a product's development to perform the V&V. This method seeks to avoid
prejudice towards that particular product on the part of the developers.

5.5 Expert System Software Verification and Validation

V&V is an essential activity for any system where software criticality is an
issue. V&V is as important for ESs as it is for any software system. The
adaptation of existing V&V methodologies to ESs requires an appreciation of the
risks inherent in the particular implementation just as it does for conventional
software. The variation in ES applications and implementation covers a wide
range just as it does for conventional software. The V&V testing should be

20-78

planned accordingly. In many cases, an ES will require less effort to validate
than a conventional software application of comparable complexity. Methodologies
for V&V of ESs is an area of ongoing research.

Conventional V&V techniques can and should be used for parts of an ES, such as
the inference engine; particularly if the inference engine is implemented with
conventional software. However, the knowledge base is substantially different
from conventional software implementations requiring the application of new V&V
techniques.

ES applications that are limited in scope, having fixed and easily verifiable
knowledge bases, should require significantly less V&V effort than those dealing
with pilot intent interpretation. Software modules of the PA need to be
subjected to more intense V&V because of the scope of the PA, the information the
PA has as input (such as pilot intent), and the capability of the PA to exert
control over other aircraft systems. A diverter ES, on the other hand, is much
more limited in scope, deals with trustworthy data at the input (such as the AIM
and FARs), and offers advice without exerting control over other systems.

In general, ES applications proposed for commercial aircraft have limited
complexity. However, this report presents V&V techniques that address simple,
as well as complex ESs. One of the tasks of the certification specialist is to
determine the required level of testing based on the proposed application of the
ES.

5.5.1 Contrasting Expert Systems and Conventional Software

The types of problems that ESs are used to solve are highly complex and too
difficult to solve by conventional computer methods.

For these problems, a solution exists in the mind of the expert. This solution
is derived by application of the expert’'s domain knowledge. This knowledge is
then translated by the knowledge engineer into terms that a computer can
understand. The manner by which problems are represented and solved constitutes
the fundamental differences between ESs and conventional software.

5.5.1.1 The Software Development Cycle

While many techniques that are used for V&V of conventional software can be
applied to ESs, there remain areas where new techniques are required. Some of
the differences are examined in the following sections. In spite of the
differences between ES and conventional software development, ESs demonstrate a
recognizable life cycle. There are well defined steps within this cycle to which
V&V techniques can be applied.

Specifications and design documents are as necessary for ES development as they
are for conventional software. Performance goals and functionality are measured
against these documents. To implement any verification technique, an objective
for a project must exist and be well documented. Without an objective, there is
little help for the developer and no hope for the verification effort.
Traceability requirements start with concrete measurable objectives. From this
point, further refinements are made until the requirements are well-defined.

20-79

As the system is developed, document maintenance is required. ES requirements
often emerge throughout the development cycle, necessitating incremental build
and test cycles. According to Naser (1991):

Testing the prototype reveals deficiencies in performance, suggests
holes in the knowledge base, and stimulates another round of
knowledge-building, coding, and testing.

5.5.1.1.1 Development Complexity

The power that an ES shell environment offers the developer and the user is often
employed in developing applications far more complex than would ever be
contemplated using a conventional software approach. This is usually manifested
by a large number (many hundreds) of rules in an attempt to model a complex
process with extremely high fidelity.

If the application is so difficult that only a powerful approach can hope to
succeed, the problem of V&V comes from the scope of the application, not from the
approach. A program such as the PA has very difficult goals, regardless of the
development technique. An ES approach to the PA reduces the complexity of the
overall task.

As with the verification of any critical and complex software application, the
V&V approach must include an assessment of the risks to correct performance and
direct attention to minimizing exposure to these risks. A major risk that is
avoided with an ES approach is the integrity of the logic applied to the rules
in the application. The V&V effort should also focus on the question of the
integrity and fidelity of the rules relative to the problem domain. This effort
is tenable, even when there are a large number of rules. This is because the
rules are in the form of English-like statements, and, more importantly, the
logic taken by the application on test cases can be examined minutely.

The complexity of the internal interactions of a software system depends not so
much on the implementation technique, but on how the developer has applied the
technique. Programs written in C can be as cryptic as the developer chooses.
ES internal interactions that are complex need to receive greater attention in
verification activity so that all consequences are known. It is possible to
design ESs that have a more structured appearance and, therefore, facilitate
testing.

In some cases, the inference engine may be implemented using LISP. When this is
the case, the developer may be required to implement a garbage collection scheme.

Table 5.5-1 summarizes some of the major differences between ESs and conventional
software.

5.5.1.1.2 Determination of Correctness

It is difficult to determine the correctness of a system that generates solutions
based on the heuristics of an expert. The domain expert is the only person
qualified to comment on the correctness of the ES. Knowledge base verification

will be a key focal point of certification activity for critical software.

20-80

TABLE 5.5-1. EXPERT SYSTEM AND CONVENTIONAL SOFTWARE
DIFFERENCE SUMMARY

Expert Systems Conventional Software
. Context driven, nonprocedural . Sequential execution,
procedural
. High-level, abstract data . User—generated data
representation representation
. More complex internal . More decisions
interactions
. May require garbage collection . More control structures
. Rule interaction . Program dependent internal
interaction
. Intelligent control behavior . Complexity
. Iterative development . Stepwise development

5.5.1.1.3 Expert System Shells

As is the case with conventional software compilers, ES shells may contain
misleading documentation or exhibit faulty operation. Schultz and Geissman!
(1991) point out that these potential problems may ultimately lead to incorrect
operation of the developed system if they go unnoticed. To develop reliable
systems, the knowledge base, database, and user—generated code, as well as the
developer’s tools need to be validated.

Paradigms (such as chaining) implemented in the tool need to be identified. The
tool then needs to be examined to see if the paradigms are carried out correctly.
The importance of a validated ES shell cannot be over—emphasized, since the
attributes and capabilities of a system are influenced and limited by the weakest
link of that system. All parameters of the tools that affect the operation or
timing of the end product must be known and specified.

The easiest kinds of ESs to validate are those developed with an established
commercial ES shell. These environments feature built-in rule editing and data
management, graphics interfacing, and accessibility by direct incorporation of
user written C code. They also support justification of answers by displaying
on request the chain of rules by which they have come to a conclusion. Since the
language that these ESs execute is in the form of English-like rules, the process
of verifying the correctness of the program logic is greatly simplified. Both
the accessibility of the language and the justification feature make it possible
to achieve a level of confidence that an ES application developed and supported
by such an ES shell does what was intended and with high reliability.

20-81

5.5.1.1.4 Inference Engine Verification and Validation

In the past, ES users created their own ESs using conventional software. In so
doing, they also programmed the inference engine. While the availability of
commercial ES shells has greatly reduced the number of custom ESs, when this is
the case, and the application’s reliability is critical, the V&V effort should
also extend to the inference engine. This is all the more true if the code and
the knowledge base for the inference engine are to be maintained by the customer.
Since ES shells contain inference engines, using a commercially available shell
for system development can reduce, if not eliminate, the need for conventional
programming. Also, the time to develop a system can be reduced by using a
commercially available shell.

At a fundamental level, an inference engine matches antecedents of some rules
with the consequences of others in what is interpreted as a logical sequence of
reasoning. The testing of an inference engine involves developing a suite of
rules whose behavior is well understood and encoding them into the form required
by the inference engine. The test would be designed to show that, at a high
level of confidence, all the possible connections between rules are explored in
arriving at the conclusion to tests. The fact that the same answers are received
by the inference engine under study as are received by the trusted inference
engine should give high confidence that the inference engine is trustworthy.

5.5.1.1.5 Flow Control

Knowledge-based systems are more context driven than systems developed with
conventional software. Testing is more time consuming when context driven
software is used due to an increase in the number of branches- that require
inspection. For verification purposes, it is easier if flow is determined at
design time, as with conventional software.

5.5.1.1.6 Implementation Language

Conventional software is developed using procedural languages such as Ada, C,
Pascal, or FORTRAN. Knowledge-based systems use a combination of both non-
procedural and procedural languages.

5.5.1.1.7 Deterministic Behavior

A knowledge-based system is deterministic, unless learning is designed into the
system. Hammer (1991) indicates that it would be difficult to verify that a
system incorporating learning behaves safely at all times. Deterministic
behavior must be demonstrated for ESs and conventional software systems.

5.5.1.1.8 Use of Dynamic Memory

Computer programs often allocate memory from a "heap" when memory resources are
required during the execution of various software procedures. For verified
software, there should exist a statically determined upper bound, so that a
routine requiring memory will never lack this resource. This memory allocation
should be determined during the design phase.

20-82

5.5.1.1.9 Domain Knowledge Review

In order for knowledge to be wutilized by a computer, it 1is transformed
extensively. A detailed review for correctness should be performed by the domain
expert before translation. After undergoing transformation for use in a computer
system, the original knowledge is in concealed form and the transformation
process and product should be carefully examined.

5.5.1.1.10 Verification of Knowledge-Based Requirements

Requirements specify system behavior. Understanding intelligence well enough to
specify its interactions in a requirement document is difficult. Intelligent
behavior consists of adaptivity, not simply complexity. Therefore, verification
of a knowledge—based system should involve the testing of intelligent control
behavior.

5.5.1.1.11 Program Structure

It has been suggested that another difference between ESs and conventional
software is that ESs are unstructured while conventional software is structured.
While certain High—Order Languages (HOLs), such as Pascal and C, are referred to
as . structured languages, the degree to which a program reflects this
characteristic is dependent upon the programmer exercising it. Software whose
native language is not structured can be implemented in a structured manner by
the programmer. What matters for ESs, as for conventional software, are the
techniques used to implement a software application.

A related issue is the modularity of the system. With conventional software,
tracing system development from the requirements to the code demands the use of
a hierarchical structure. A technique called structured design is used. When
this method is followed, procedures are generated in a top—-down incremental
fashion. 1In the past, rule-based ESs have lacked the hierarchical structure of
conventional software. Rules were intermixed with each other and with control
rules since no standard techniques or development tools existed to assist in
achieving the goal of modularity. Modern design tools, however, allow rules to
be categorized into classes by the designer. The ability to express the high
levels of abstraction made possible with ESs allows designers to structure the
knowledge base, along the most natural divisions that exist, as part of the
knowledge.

5.5.2 Specification and Development Differences

Compared with conventional software, the number of design stages in an ES
development project will be fewer due to the high level of expressiveness. The
language of the ES operates at a much higher level than that of conventional
software and may appear more like a requirements document than code. This is a
benefit for ESs, since the verification process is concerned with the details of
fewer intermediate steps. The number of associated documents will also be fewer
than for conventional software.

20-83

5.5.2.1 Vaguely Specified Systems

V&V of ESs is difficult when there is uncertainty that the rules in the knowledge
base properly represent the best approach to a problem. This situation arises
when the problem domain is not fully understood. When a knowledge base is
developed by interviewing an expert who is unwilling or unable to define the
processes used in solving a problem, it is up to a knowledge engineer to
translate that knowledge into rules. Even with a cooperative and articulate
. expert, the process of refining a rule base can falter when the effort to make
explicit expertise reaches the intuition level. It is frequently at the
intuitive level that the performance of an expert is distinguished from that of
a rule-follower.

Challenges to the V&V effort result when the requirements for the system, and
specifications to which the system was developed, lack detail. The performance
of the knowledge base must then be tested empirically, with the proof involving
the approval of experts in the problem domain. The problems of verification are
not insurmountable if the inference engine is verified independently and there
is a large number of tests, perhaps developed by domain experts, for which the
answers are independently known.

5.5.3 Implementation Differences

Conventional software and ESs are similar in that both consist of software which
executes on a digital computer. There are associated inputs and outputs for any
software system. An Al-based system or ES may even use a conventional HOL.
Parts of the ES are typically implemented using conventional software.

Normally, the ES user develops ES applications through the use of tools. A
common tool is the ES shell. The ES shell gives developers the capability to
create systems without using procedural languages. Additionally, the problems
that are solved using ESs have different characteristics. To be effective, the
V&V approach and activity should be tailored to address these differences.

Procedural programs use a sequence of executed statements which are followed
easily. The next statement to be executed in a sequence is based on the value
of a defined set of variables. With non-procedural languages, the execution flow
is not determined as easily. This is due to the characteristics of the inference
engine used to control execution. Data and control are partitioned in ESs. The
inference engine determines what statement is executed next by taking into
account the basic state of the program together with the data. Partitioning for
the knowledge base and built—in traceability tools for the shell assist
developers in generating systems where the execution flow can be traced and
explained easily.

Tool performance limitations may become a factor in the development process for
ESs, as also may be the case for conventional software. There are performance
variables associated with tools that are not apparent to the developers until
actual real-time operation of the program.

All software is developed iteratively. ESs, however, require greater amounts of
iteration in the development process since development involves extracting

20-84

information from the mind of domain experts. Many of the design assumptions made
during early stages of development will undergo changes during the ES development
cycle. Therefore, an incremental approach to development is viewed as necessary.

It must be said, however, that current conventional software development allows
a far greater degree of iteration than in the past. New techniques and tools,
such as Object-Oriented programming, applied to the development of conventional
software systems have allowed rapid and iterative development cycles which former
methods could not support.

5.5.4 Verification and Validation Techniques for Expert Systems

There are a number of techniques used for V&V. No single technique will be
efficient for all applications. Different types of errors and characteristics

are tested with each technique. Two general approaches exist. One examines
characteristics of the ES implementation. The other examines whether or not the
solution fits, or solves, the problem. This approach is implementation

independent. The former method is called a "clear box" technique, as opposed to
the black box technique. Both techniques are essential.

V&V methods are sometimes classified into two groups: qualitative and
quantitative. A qualitative method applies "subjective comparisons of
performance" to the ES. A quantitative method uses statistical techniques for
comparison of ES performance against test cases or experts.

O'Keefe, Balci, and Smith (1991) divide the quantitative validation method into
two categories: ome uses a confidence interval and the other uses a hypothesis
test. The confidence interval is compared subjectively with an acceptable
performance range, whereas the hypothesis test is a formal test that compares
measurements against a predetermined acceptable performance range.

A conventional software subroutine that manipulates variables passed to it based
upon a mathematical procedure, will produce a solution for which only a single
value or set of values is the correct result. Hence, correctness 1is easily
tested. A difficulty often arises with ESs because there may be more than one
correct solution to a problem. What constitutes an acceptable or unacceptable
solution from the system should be defined clearly before verification begins
(Schultz and Geissman! 1991).

Table 5.5-3 summarizes some V&V techniques for ESs (Naser 1991).
5.5.4.1 Testing the Implementation

Testing the implementation involves checking interactions to see if they are
intended and correct. In systems where there is a large amount of interaction,
this can be a difficult task. Several techniques for implementation testing are
examined in this section. These techniques do not identify errors, but provide
an indication that an error may exist. It is then up to the programmer or domain
expert to determine if the error actually exists.

20-85

TABLE 5.5-3. EXPERT SYSTEM VERIFICATION AND VALIDATION TECHNIQUES

. Formalize the requirements in a specification document.

. Verify that the requirements specification captures the requirements,
including those for system usability.

. Verify that the requirements specification is implemented in the
system design.

. Verify that the design is maintainable.

. Verify adequacy of knowledge and accuracy of knowledge presentation.

. Verify that the requirements are met for all interfaces of the
system.

. Verify rule completeness and consistency.

. Conduct comprehensive shakedown testing, exercising as much of the

system as possible.

. Verify system usability.

. Conduct tests for special cases and boundary conditiomns.

. Verify that the system is useful and fulfills its design purpose.
Testing ESs can be similar to testing conventional software. Testing
conventional software can be performed by exercising decision branches, checking
looping conditions, and testing boundary conditions. Applied to ESs, these

techniques could be mirrored by testing every rule or sequence of rules, if the

rule base is not too large, and exercising rules based on the rule conditions. -

Additionally, just as conventional software is tested for quality of
implementation, ESs should be checked for problem indicators. These include
obscure constructs, overlapping rules, incongruous rules, incomplete rule
coverage, and infinite rule loops (Hammer 1991).

5.5.4.1.1 Testing Rule Consistency

Rule consistency checks for the absence of undesirable characteristics in ES
implementations. These characteristics include the following:

. Dead—ends - A rule that has no effect on any other rules.
. Unreachable rules - Rules that are not affected by any other rule.
. Circular rules - Rules that have the potential to repeat endlessly.

20-86

. Conflicting rules - Rules that contradict each other and perform actions
which are in opposition.

. Redundant rules - Rules that contain the same information and perform some
of the same actions as other rules. Although redundant rules may not
actually produce errors, they should be identified and checked.

5.5.4.1.2 Testing Data Consistency

Data consistency involves checking that data or facts are used as defined. An
operation that writes a 16-bit value into a variable defined as only 8 bits would
be detected by such a check. '

5.5.4.1.3 Sensitivity Analysis

Sensitivity analysis is an examination of how one variable may influence other
variables. This type of analysis is useful in classifying problem solutions
(French and Hamilton 1992).

5.5.4.1.4 Structural Testing

Structural testing is performed to ensure that a set of tests is comprehensive
in coverage. This type of testing can be adapted to ESs by defining coverage to
include rules, frames, and frame demons (procedures activated by changing or
accessing frame data). When changes are made to the knowledge base, the coverage
again must be determined and new tests created and executed.

5.5.4.1.5 Specification-Directed Analysis

Specification—-directed analysis is a method for demonstrating that a program is
traceable to the specification from which it was produced. This is performed by
first arriving at a method which identifies and records specifications. These
identified specification items are then checked against the program for
correspondence.

In addition, the knowledge represented needs to be adequate for the intended use
of the system. This requirement helps define test cases so that test coverage
will be complete. When incorrect responses are found in the system, it should
not be difficult to trace the incorrect response to its origin.

5.5.4.2 Test Bias Elimination

Biases in testing should be avoided, where possible. One particular bias is the
use of test cases that were used during the development process. Presumably, the
system was designed in such a way that it responds favorably to these tests. For
completeness, some of these tests should be used to ensure that they still work.
However, testing should focus on areas in which development testing has not been
performed.

As with conventional software, validation and testing should be performed by a
team independent of the development process to avoid prejudice.

20-87

5.5.4.3 Test Coverage

For conventional software, the sequence of execution corresponds to the high

level code. In an ES, the exact sequence of execution may be difficult to
determine by inspection. This becomes an issue since it adds to the difficulty
of determining test coverage for verification. However, the sequence of

execution is known after execution, since ESs can justify their reasoning by
showing the chain of logic used to reach a conclusion.

5.5.4.4 Expert System Black Box Techniques

Black box techniques examine whether or not the solution of a particular problem
fits, or solves, that problem. They are independent of any implementation
language or design.

5.5.4.4.1 Knowledge Acquisition Checking

The earliest that errors in knowledge are introduced into the development process
is in the acquisition of knowledge from the expert. Errors at this stage may be
kept to a minimum by testing the expert knowledge for completeness. This can be
accomplished by checking for the following (French and Hamilton 1992):

. Tasks which are defined but have no associated goal
. Goals that are defined with no associated task

. Undefined terms

. Conditions for which no goal or task is defined

5.5.4.4.2 Knowledge Consistency

Consistency of the supplied knowledge is also the focus of V&V techniques. This
involves checking for contradictory or redundant statements.

5.5.4.4.3 Knowledge Representation

Representing knowledge in a form easily understood by both the expert and the
knowledge engineer is essential to the verification process. Some techniques
that can be used to simplify the representation of knowledge include state
tables, concept maps, and task time lines (French and Hamilton 1992).

5.5.4.5 Formal Verification of Expert Systems

Formal methods, a technique designed for verification of conventional software,
can also be used in verification of ESs. This technique, described as an
alternative technique in RTCA/DO-178B, can be used to satisfy airborne software
certification requirements. According to Rushby and Whitehurst (1989), this
technique "can, in principle, guarantee the absence of faults." Its application
involves demonstrating consistency between two different descriptions of a
program. This can be done using two different levels of program specifications,
or by using the program itself along with the program specification.

Consistency can be demonstrated by the working out of a formal mathematical
proof, when the two parts are treated as formal mathematical texts. One way this

20-88

technique can be applied is by using a "stacked" application of verification
steps. Conventional software breaks down into a number of steps during the
development process. It is possible to represent each specification level
formally and to demonstrate that each successive level demonstrates consistency
with the prior level.

The use of formal methods is a promising technique, but requires further
research. The formal methods technique can be time consuming and difficult, and,
therefore, expensive to apply. Since this is so, formal methods are typically
reserved for critical applications, where reliability and safety issues are
primary considerations. This technology would benefit from guidelines or
standards for expressing knowledge that needs to be cast into the formal
verification mold. In addition, the development and use of suitable tools could
assist ES implementers in producing systems with greater reliability.

5.5.4.6 Other Verification Techniques

Other black box methods used in V&V of ESs include expert review, minimum
competency testing, and disaster testing. Expert review is necessary for systems
requiring V&V. By definition, the expert already has an understanding of the
problem to be solved and may be able to work out solutions to test cases. Having
the implementation in a form easily understood by the expert is essential to this
phase of the review.

A minimum competency testing of an ES involves testing the system in much the
same way as humans are tested for proficiency. A number of different scenarios
may be generated for testing the response of the ES.

Systems are often tested for scenarios that may rarely, if ever, occur. Typical
operation of the system under normal conditions often is treated with less rigor
than some of the remotely possible conditions. These remotely possible
conditions, however, may have serious consequences when they do occur. Testing
for conditions such as these is referred to as disaster testing. This type of
testing is also necessary for testing completeness of the system.

5.5.4.6.1 Automating Knowledge Base Verification

Some tools are designed to assist the developer in automating the knowledge
acquisition process. Others can keep the knowledge engineer in charge of the
knowledge transfer process. As ESs become more commonplace and take on critical
tasks, the need for tools to assist in the validation process increases. Methods
to automate the validation process can provide many benefits. Tools can shorten
the verification process, eliminate bias, and catch problems that may otherwise
be overlooked. Following are the types of problems that may be found using
automated tools:

. Syntactic errors
. Unused rules, facts, and questions
. Incorrectly used legal values

20-89

. Redundant constructs

. Rules that use illegal wvalues, incorrect external declarations or
references, and multiple methods for obtaining expression values

Jafar and Bahill (1993) describe a tool called Validator. This tool provides an
interactive environment that is used to identify certain types of errors that may
exist in knowledge-based systems. Syntax errors, misspelled words, values out
of range, and unused values and rules are some of the errors detected by
Validator. It has been exercised on a number of ES knowledge bases produced by
university students, in addition to demonstration system knowledge bases from
commercial software houses.

5.5.5 Supportability Issues for Expert Systems

In a systems engineering environment, supportability issues are not considered
after a product is fielded. They are considered at the requirements level and
influence the specification, design, and testing.

Following are several techniques used to enhance supportability of ESs (Carlton
1987):

. Keeping the inference engine separate from the knowledge base - Allows the
knowledge base to be maintained without inference engine changes, allowing
ease of use and flexibility.

« Representing knowledge uniformly - The higher the number of structures
used to represent knowledge, the greater will be the effort when updates
are required. It could be difficult to maintain a single mechanism since
the problem type may dictate the most efficient representation.

. Avoiding complexity in the inference engine - For cases where the
inference engine is developed by the user, a well-designed and simplified
engine facilitates the generation of explanations.

. Utilizing redundancy - When developing the knowledge base, the use of
multiple knowledge sources is recommended so that confidence in system
performance is increased.

Another supportability issue focuses on the development environment used. If an
ES shell is used, development can be faster and more reliable. Additionally,
maintenance can be performed on this type of system by nonprogrammers. If an HOL
is used, the developer has greater flexibility with knowledge representation and
inferencing schemes. Additionally, if an HOL is used, other considerations
should be weighted, such as ease of use, expressiveness, and flexibility of the
HOL, since these factors influence supportability.

5.5.6 Configuration Management Issues for Expert Systems
Configuration Management (CM) is a process or discipline that manages and
controls the modification of hardware and software components of a system. It

defines functional and physical component characteristics and records and reports

20-90

changes in the status of these components. It should be applied rigorously to
large—scale software and hardware development efforts. It has classically been
applied to procedural software.

Knowledge can be represented both procedurally and declaratively. Procedural
solutions are derived after a sequence of instructions is executed. An inference
engine is an example of procedural knowledge. Conventional programs are totally
procedural, while knowledge bases may contain a mix of procedural and declarative
knowledge. Declarative knowledge consists of facts asserted to be true. An
inference scheme is also associated with these facts (Carlton 1987).

CM techniques applied to procedural software are understood and can be applied
easily. Since the inference engine is procedural, CM for it is well defined.
Changes to the knowledge base have no influence on the inference engine.
According to Carlton (1987), conventional CM for the knowledge base presents a
problem. He states:

While conventional configuration management procedures can be
applied to the knowledge base, this will put unnecessary constraints
on the flexibility of the knowledge-based system by limiting the
ability of the user to make changes to the knowledge base to suit
local conditions.

Changes to the knowledge base may become necessary when the ES operating
environment changes. Local conditions are considered when information contained
in the knowledge base is tailored to suit each operating environment. In this
case, rapid changes to the knowledge base are required and the conventional CM
process will be burdensome.

A solution to this problem is suggested. If the knowledge-based system can track
its own configuration, much of the CM burden can be alleviated. This can be
accomplished by having the system track changes and note them in a configuration
data file. This file can be transmitted to the CM facility periodically. This
file is then subject to central control and analysis (Carlton 1987).

5.5.7 Reliability Requirements

Metrics can be valuable sources of indicators for both development cost and
failure intensity. Two common metrics applied to conventional software include
complexity and size. The assumption is that larger programs and more complex
programs will contain more errors and, therefore, be less reliable. A major
difficulty is knowing which metrics to use and how to interpret the results

(Rushby 1988). Measuring reliability is further complicated due to the
differences between knowledge-based and conventional software. Further
information on software metrics can be found in DOT/FAA/CT-91/1, "Software

Quality Metrics."

Since ES technology is still rather young, there is a lack of experimental data
for these systems. It also may be risky to assume that the relationships
observed for conventional software will apply in the same way to ESs. Concerning
this, Rushby (1988) states:

20-91

Empirical data will need to be gathered in order to suggest and
validate useful relationships among metrics for AI software. It is
unlikely that simple counts of the number of statements or rules in
an AI system’s knowledge base will yield useful information
regarding its competence.

5.5.8 Testability Issues for Expert Systems
5.5.8.1 Testing Techniques

With conventional software, coverage techniques exist for testing. They include
branch, path, and condition coverage. Critical paths can be examined and traced
through the software. The same is not true for knowledge-based software, since
no critical paths exist to trace.

There are a large number of possible combinations and permutations of knowledge.
This necessitates a change of testing methods for knowledge bases. Additionally,
the number of test cases available to test the operation and performance of the
ES will influence the testing coverage and the user’s confidence in the system.

5.5.8.2 Validity of Input Data

For conventional software, input data are tested for validity by verifying that
they are within acceptable bounds as defined for the system. Methods for
checking the validity of largely symbolic data need to be examined and developed
for knowledge-based systems.

5.5.8.3 Testing Level for Changes to the Knowledge Base
A change made to the knowledge base of an ES used in a critical system requires
testing. The level of testing required is unclear. Working with partitioned

knowledge bases may mitigate some of the difficulties encountered when testing
changes (Carlton 1987).

20-92

6. HUMAN FACTORS AND ARTIFICIAL INTELLIGENCE

The amount of data that the flight crew must absorb has increased due to the
expanding complexity and number of avionic systems in the cockpit. Reducing
pilot and information overload can be achieved using AI. As with any technology,
the final system interface (i.e., man-machine interface) needs to be an integral
part of the design and development cycle.

Human factors concerns cover all aspects of technology, from design through
implementation. To field automated intelligent systems and pilot assistants that
add to the safety of flight, human factors technology should be applied to
designs from the beginning. This will ensure that potential problems are
identified and corrected before they have significant impact on system
development.

6.1 Expert System Development Stages

There are four critical stages of development for ESs and their human factors-
related concerns, as identified by Wickens (1992):

. Knowledge Acquisition - For complex ESs, the process of extracting
knowledge from experts, and implementing that knowledge in the form of a
rule base, can be a considerable challenge. Information supplied by the
expert is subject to bias for which "debiasing" techniques may need to be
applied. Additionally, not all expert knowledge can be verbalized.
Methods other than verbalization may need to be explored.

. Knowledge Representation - How knowledge is organized is a concern. Is it
understandable and can it be retrieved easily by wusers? Also,
consideration is necessary for tailoring the stored knowledge to the
capability level of the user.

. Knowledge Utilization - The design of the computer interface must consider
sound human factors design techniques. This includes displays and
controls, as well as the vocabulary used to communicate with the user.
Another factor that needs to be addressed is how the confidence level of
the ES's offered advice (which is a variable) is communicated to the user.

. Knowledge Maintenance - As is typical with any computer system, its data
occasionally requires revision. Knowledge bases of ESs also require
maintenance, either with new information being added or older knowledge
being modified. How this is done, and when it is done, are concerns that
certification specialists need to address.

20-93

6.2 National Plan and Artificial Intelligence

A valuable resource for identifying human factors issues and related safety
concerns is the FAA's National Plan for Aviation Human Factors. This Plan
represents the first step of an intensive effort to coordinate human factors-—
related research in aviation among government agencies, such as the FAA, NASA,
and DOD.

In the Plan, a number of issues are raised that focus on safety concerns for
intelligent cockpit devices. One such concern is how pilots will react to
probabilistic AI. The Plan states:

Automated flight deck systems will soon incorporate artificial
intelligence with the capability to give pilots information or
advice about complex matters with an associated probability that it
is correct. Before such probabilistic AI systems come into
extensive use in advanced technology aircraft, we need to know more
about how crews will react to them, how to design them for optimum
use, and how to train crews to interpret and use the probabilistic
information.

In addition, other concerns, such as those listed below, are identified and
expressed in the Plan:

. Intelligent automated systems should not be able to move the aircraft out
of the safe operating envelope.

. The test and validation methodology for intelligent automated systems is
still in its infancy and requires research and definition.

. The reaction of the flight crew to the type of information presented by an
Al system requires investigation.

6.3 Keeping the Human as a Factor

One of the human factors problems identified for automated systems is the user’s
overconfidence in the decision making process. According to Wickens (1993), one
of the methods proposed to:

deal with bias, one that is emerging in the commercial flight deck
and is already used in the military flight deck... [is the use of
expert system technology]. Expert systems can, at least according
to some scientists, replace some of the pilot decision making
necessary in the cockpit, or at least can recommend judgements to
the pilot... .

Automated decision aiding has been studied for its ability to reduce or eliminate
bias from decision making. There is some concern that these aids may serve to
worsen, and not improve, decision performance (Wiener and Nagel 1988). In many
of the cases where poor performance was noted, the human was used to gather data
and implement decisions of the computer. In some cases, the combination led to
worse performance than either the machine or human acting alone.

20-94

A method of improving the overall performance and interaction is shown in figure
6.1-1. This method takes into account the capabilities and strengths of the
human and the machine. All of the possible solutions are generated by the
machine. A more active role for the human is maintained using this method, and,
hence, the human remains in the loop in a key role; not merely as a physical
actuator for control input devices.

Human
Solution Information Goal
Selector Processor Generator
X ﬁ ;
Solution Data
Generator Filter

Machine | Expert

— Environment

FIGURE 6.1-1. IMPROVED HUMAN PERFORMANCE GENERATOR
(Wiener and Nagel 1988) '

Keeping the pilot in the loop is a concern, whether due to use of ATl or due to
use of any cockpit automation system. Reliance on yet another system may lead
to further complacency and inattentiveness. Failure of an automated system

creates increased crew workload, often at a time when this additional workload
is unwelcome.

Any system, whether analog or digital, is prone to failure. A number of factors,
including system complexity and unforeseen circumstances, prevent avionic systems
from operating error free over their life cycle. The unintentional changing of
a single bit of a digital system, whether by a software or hardware design error
or externally induced, can produce significant undesirable consequences. While
it may be possible for the system to monitor itself and flag most of these
errors, not all problems are identified and announced to the system operator.
Other systems may be used to monitor system health and reduce the probability of
an undetected failure. Therefore, the role of the human as a system monitor
should remain, regardless of the level of automation.

20~-95

6.4 Automation and Other Human Factors Concerns

Other factors need to be examined, in addition to the problem of keeping the
pilot in the loop. Human factors concerns over automation systems reflect some
of the same concerns presented by AI systems. Some of these concerns are
identified by Gabriel (1993) and consist of the following:

. Loss of Situation Awareness - Monitoring an automated system that is
reliable is a boring task. The crew becomes distracted easily and diverts
attention elsewhere. When this happens, awareness of the current

situation is diminished.

. Loss of Proficiency - Competence in a skill requires practice. How to
retain skills that are replaced or diminished by an automated system is a_
human factors issue.

. Reduced Job Satisfaction - Reduced job satisfaction can occur since the
crew may no longer feel that their skills are important.

. Overconfidence in the System - Overconfidence in the system is a negative
effect of automation. If the system malfunctions, the crew may not be
prepared to handle the consequences.

. Intimidation by Automation and/or Complacency - A crew lacking experience
or being overconfident may be reluctant to take control when the automated
system does not perform well. In addition, an automated system may be
designed in a way that does not communicate everything that the crew
should know. This reluctance and uncertainty may reduce the ability of
the crew to fulfill its responsibility.

. Increased Training Requirements - System complexity requires increased
training. Part of the required training is to handle failure modes.
Reprogramming can also be complex. Maintaining proficiency is necessary
and, therefore, increased training is required.

. Inability of the Crew to Exercise Authority - This results when the crew
is further removed from the decision making process by factors such as
intimidation and the envelope protection features of the system.

. Design Induced Error - One of the goals of automation is to reduce human
error. A concern is that while the frequency of errors is decreased, the
consequence of the errors that do occur is much greater due to the control
exerted by the automated system. Concerning this, Nigel (in Wiener and
Nigel 1988) states:

As aircraft become more highly automated, and the manual
control skills of the pilot are displaced by aircraft systems
(autopilots) which perform the general guidance and control
functions associated with management of the flight path,
discrete actions... seem to be assuming increasing importance
in the causation of incidents and accidents.

20-96

7. CONCLUSION

AI technology can provide users with many benefits in a number of applications.
However, there are limitations as to what can be performed with an Al-based
system. It will never be able to replace genuine intelligence. AI deals with
automating procedures that are already known. If little is known about a
procedure, it is better to research the procedure than to attempt development
based on vague specifications.

With currently available technology, ESs perform better as assistants or advisors
than as primary decision makers. Humans will always have the advantage over ESs
in that they have the power of human sensory pattern recognition and flexibility.
Al systems will not be capable of replacing humans in most applications and will
be used mainly to augment the capabilities of the user.

Another issue that needs to be addressed is the proper application for an AI-
based system. AI technology is not efficient at solving all types of problems.
Intense number manipulation and linear problems would be better performed using
conventional methods. There are certain types of problems that naturally lend
themselves to being solved using AI techniques.

Human experts often are in short supply. ESs are useful because the knowledge
of experts can be incorporated into knowledge bases, allowing users who are not
experts to benefit from the expert’s knowledge. NN systems are helpful for
applications such as pattern recognition. Fuzzy logic systems are useful for
systems that normally require human intuition, are difficult to control with
conventional techniques, or are difficult to model.

While many benefits can be gained from the use of AlI-based technology, a number
of issues need to be addressed before such systems are fielded in critical
applications of airborne avionics. This section summarizes and highlights some
key issues concerning certification of AI-based technology.

7.1 Learning Systems

One of the certification concerns mentioned in the National Plan for Aviation
Human Factors is that airborne software not be allowed to remove the aircraft
from the safe operating envelope. The capability of software to maintain an
aircraft within the design envelope can be demonstrated for conventional,
deterministic software. However, this would be difficult to demonstrate for AI-
based systems with learning capability. Therefore, learning systems are unlikely
to appear in civil aircraft (Naser 1991).

7.2 Software Level Determination

While ESs have been proposed and may be developed for military aircraft for the
purpose of intervening and assuming control in life-threatening situations, it

20-97

is unlikely that this would happen in the near future for civil aircraft. It is
more likely that ESs introduced in the near future for civil use will perform
monitoring and pilot assistant functions. Certification specialists most likely
will not require these systems to undergo the rigorous inspections and tests to
which critical systems are subjected. One may argue that since the system
actually controls nothing, it is not able to affect the performance and safety
of the aircraft. On the other hand, receiving incorrect advice from a system
that is normally relied upon by the captain and first officer can have dire
consequences. Certification authorities will need to address these issues early
in the development process, since determination of the software criticality level
of a system affects inspection and documentation intensity and, therefore,
implementation cost.

7.3 Enhancing Safety

An objection may be raised that we are just adding another layer of uncertainty
on top of a system that is already plagued with unknown failures. Digital
systems have unique failure modes compared to analog systems. Failures that are
detected in aircraft operation at 40,000 feet are sometimes not reproducible on
the test bench. Some digital systems problems magically disappear when the
breaker is cycled off and on by the flight crew. Additionally, failures of
digital systems are not always detected in a timely fashion. With this level of
uncertainty already existing, would the addition of another level of uncertainty
further degrade safe flying?

A similar objection can be raised when multiple access data buses or high-speed
parallel backplanes are implemented for critical systems. Technologies formerly
unknown in avionics are continually being designed and implemented and
certification specialists address these issues as they arise. At issue is how
AI and ES technology are perceived. If confidence in the technology is lacking,
then its application to any application is viewed as a degradation. If it is
perceived as a sufficiently mature technology that excels in certain applications
(as it does), then its application in cockpit systems is seen as a benefit.

7.4 Hardware and Software Failures
There are numerous ways to express the same functionality using conventional
software for system design. As tools automate more of the development process,

design is performed using higher levels of representation.

One architectural design technique, mentioned in RTCA/DO-178B, for limiting the

impact of software errors is the use of redundant, dissimilar software. The
degree of dissimilarity and the advantages gained by utilizing this technique are
minimized by the higher levels of representation available to designers. For

ESs, this is also the case, since one of the attractions of this technology is
that knowledge can be coded at a high level. Redundancy implies that the
expert’s rules would have to be different for accomplishing the same ends.
Knowledge base partitioning and system monitoring techniques, along with
extensive, detailed V&V, may be the solutions needed for ESs designed to perform
critical functions.

20-98

The effect of hardware failures for Al-based systems also needs to be examined.
What effect will hardware failures have on the conclusions reached by an ES? In
the case of a pilot—aiding system, will failures be detectable only by the bad
advice given by the system? Hardware error detection schemes will be critical
to ensure system reliability, as they are with any automated system.

*7.5 Ground-Based Avionics?

There is a related issue when considering the certification of Al-based airborne
software. Some proposed pilot aid systems rely upon the availability of data
link to receive company-related information required by the system. Data link
is a two-way digital communication system. Using data link, one could transmit
an aircraft’s complete status, environmental data, and other necessary
information to a ground-based facility on a communication channel. If that
channel has sufficient bandwidth for a timely response, the exact Al-based
program could be executed at the ground-based facility with the results
transmitted back to the aircraft.

Such a system would not be subject to the certification requirements for airborne
software, yet the only significant difference would be the physical location of
the CPU that executes the Al-based software. While such a scenario may be
impractical at the current time, certification specialists should consider the
impacts of relying on this technology for airborne support, wherever the data are
generated.

7.6 Verification and Validation Issues

One of the primary activities that requires addressing by developers and
certification specialists concerns V&V methods for Al systems. Numerous V&V
techniques that have been successfully applied to ESs have been identified in
this report. Identifying a set of tests that can be demonstrated to satisfy
safety requirements will be a challenge.

All parts of the ES, such as the database, knowledge base, inference engine,
interfaces, and custom software need to be subjected to suitable inspection..
Knowledge bases need to be complete. Missing rules will produce errors. For
complex ESs, demonstrating that the knowledge base is complete may be difficult,
since the expert may not even be aware of what is done to solve a problem. Also,
it is impossible to guarantee that an ES contains all of the expert’s knowledge.

The knowledge base also needs to be error free. Many of the techniques used with
conventional software may be used to demonstrate that the system will not produce
incorrect results. Also crucial to the knowledge base is maintaining data
integrity. Maintaining an accurate, up-to-date, database is essential for
product integrity throughout the product life cycle. Knowledge acquisition,
representation, and data transformation techniques should be tested.

As with conventional software, key to the certification process for ESs will be
the faithful application of a thorough V&V process, applied uniformly and
starting with the product specification. Life cycle factors such as
supportability, maintainability, and CM need to be considered and tailored for
ESs as necessary.

20-99

7.7 Tool Qualification

Tools at all levels of the development process can assist in achieving cost,
safety, and other goals. Tools enhance the development process by reducing
development time and assisting in the elimination of human design error. Tools
to automate knowledge base verification could provide substantial benefits when
addressing knowledge base integrity issues. Standardization of knowledge base
representation may be necessary to implement the automation process. Also, tool
qualification issues require addressing since a new set of tools focusing on this
field will require validation.

7.8 Design Guidance

ESs should be scrutinized using conventional V&V techniques where possible.
RTCA/DO-178B needs to be examined to identify details of the processes that need
to be modified to accommodate differences in AI-based and conventional
development. Further effort is needed to develop relevant design guidance for
Al-based systems.

7.9 Human Factors Issues for Expert Systems

Developing human—centered automation and designing advanced technology that will
capitalize on the relative strengths of humans and machines are key to the
success and usefulness of AI. Also, applying certification criteria to advanced
technology systems, as part of the development process, will provide significant
advantages for the testing phase.

The use of AI on the flightdeck brings up many issues relating to automation that
need to be dealt with. Human factors specialists will need to address areas such
as possible loss of situation awareness and proficiency, in addition to
overconfidence in the system or intimidation by the system. The overall
significance of incorporating probabilistic systems in the cockpit should be
addressed as well.

Wickens (1993) states that too little is known about the way pilots make
decisions and, therefore, ESs should not be entrusted with decision
recommendations. While this is certainly a concern and has been the focus of
much research for the PA and other studies, the many benefits of using Al-based
technology beg to be investigated. At issue is not the complete understanding
of the human thought process, but using a logical, consistent, unbiased decision
tool (inference engine) to make conclusions based on available data. Simple
systems, such as diverters and diagnostic aids based on ESs present logical
approaches to solving complex problems in an accurate and timely fashion.

Al-based systems for commercial aircraft are being researched and tested. These
systems can offer distinct advantages over conventional software systems.
Ultimately, such systems can offer economic advantages and contribute to flight
safety. Al-based pilot aiding systems have the potential to contribute
meaningfully to aviation. A solution that matches the technology with the
problem to be solved, using a systems engineering approach, will be a solid start
for developers of Al-based avionics.

20-100

BIBLIOGRAPHY

Adeli, Hojjat, Knowledge Engineering Volume 1., Fundamentals, McGraw-Hill
Publishing Company, New York, NY, 1990.

Anderson, Bruce A., et al., "Knowledge Engineering for a Flight Management
Expert System," Proceedings of the IEEE 1985 National Aerospace and
Electronics Conference, IEEE Service Center, Piscataway, NJ, 1985.

Anderson, James A., "Neural-Network Learning and Mark Twain’s Cat," IEEE
Communications, Volume 30, No. 9, September 1992.

Antonisse, James H. and Karl S. Keller, "Dynamic Evaluation of Imprecisely
Specified Knowledge," IEEE/AIAA Digital Avionics Systems Conference
Proceedings, IEEE Service Center, Piscataway, NJ, 1986.

Aptronix*, Inc., NEWS11l.TXT, San Jose, CA, July 1992.

Aptronix?, Inc., What is Fide?, San Jose, CA, July 1992.

Artifacts and Problem Solving Heuristics," Proceedings of the 10th
International Joint Conference on Artificial Intelligence, Milan, Italy,
August 23-28, 1987.

‘ Araya, Agustin and Sanjay Mittal, "Compiling Design Plans from Descriptions of

Aviation Week & Space Technology, "Software Developed for Using Neural Network
Techniques in Problem Solving," June 17, 1991.

Avionics Update, "Army Awards Contract for "Intelligent” Helicopter Associate,"
Avionics, September 1993.

Ballard, Dan and Dave Nielsen, "A Real-Time Knowledge Processing Executive for
Army Rotorcraft Applications,” IEEE/AIAA 11th Digital Avionics Systems
Conference Proceedings, IEEE Service Center, Piscataway, NJ, 1992.

Ballard, Dan and Lisa Owsley, "Artificial Intelligence in the Helicopter Cockpit
of the Future," IEEE/AIAA 10th Digital Avionics Systems Conference
Proceedings, IEEE Service Center, Piscataway, NJ, 1991.

Barber, Richard and George Imiah, "Delivering the Goods with Lisp,"
Communications of the ACM, Volume 34, No. 9, September 1991.

Bartee, Thomas C., ed., Expert Systems and Artificial Intelligence:
Applications and Management, Howard W. Sams and Company, Indianapolis, IN,
1988.

20-101

Becker, Lee, et al., "Translating Expert System Rules into Ada Code with
Verification and Validation," NASA Contractor Report 187505, NASA Langley
Research Center, Hampton, VA, June 1991.

Berardi, L., et al., "System Architectures," AGARD Conference Proceedings 417:
The Design, Development and Testing of Complex Avionics Systems, Advisory
Group for Aerospace Research and Development, Neuilly Sur Seine, France,
December 1987.

Berning, Sandra, Douglas P. Glasson, and James A. Guffey, "Adaptive Tactical
Navigation Concepts," Proceedings of the TEEE 1986 National Aerospace and
Electronics Conference, IEEE Service Center, Piscataway, NJ, 1986.

Berning, Sandra, Douglas P. Glasson, and Gary A. Matchett, "Functionality and
Architectures for an Adaptive Tactical Navigation System," Proceedings of

the TEEE 1987 National Aerospace and Electronics Conference, IEEE Service
Center, Piscataway, NJ, 1987.

Berning, Sandra, Douglas P. Glasson, and James A. Guffey, "Adaptive Tactical
Navigation Program," AGARD Conference Proceedings 499: Machine
Intelligence for Aerospace Electronic Systems, Advisory Group for
Aerospace Research and Development, Neuilly Sur Seine, France, May 1991.

Berning, Sandra, Douglas P. Glasson, and Jean-Michael L. Pomarede, "Knowledge
Engineering for the Adaptive Tactical Navigator," Proceedings of the IEEE

1988 National Aerospace and Electronics Conference, IEEE Service Center,
Piscataway, NJ, 1988.

Bezdek, James C., Analysis of Fuzzy Information, CRC Press, Boca Raton, FL,
1987.

Bezdek, James C., "Computing with Uncertainty," IEEE Communications, Volume 30,
No. 9, September 1992.

Bezdek, James C. and Pal K. Sankar, Fuzzy Models for Pattern Recognition, IEEE
Computer Society Press, Los Alamitos, CA, 1991.

Biema, Michael, "Parallelism in Lisp," Proceedings of the 10th International
Joint Conference on Artificial Intelligence, Milan, Italy, August 23-28,

1987.
Bittermann, Vincent, et al., "FINDER: Flight-Plan Interactive Negotiation and
Decision Aiding System for Enroute Rerouting," 12th International

Conference on Artificial Intelligence, Expert System, Natural Language,

Avignon, France, June 1-6, 1992.

Boehm, Barxry W., "A Spiral Model of Software Development and Enhancement," Uma
G. Gupta ed., Validating and Verifvying Knowledge—Based Systems, IEEE
Computer Society Press, Los Alamitos, CA, 1991.

Bouchard, Philippe 0., Keynote Address, AGARD Conference Proceedings 499:
Machine Intelligence for Aerospace Electronic Systems, Advisory Group for

20-102

Aerospace Research and Development, Neuilly Sur Seine, France, September
1991.

Bowyer, M. R. and S. A. Cross, "Parallel.Knowledge Based Systems Architectures
for In-Flight Mission Management," AGARD Conference Proceeding 504: Air

Vehicle Mission Control and Management, Advisory Group for Aerospace
Research and Development, Neuilly Sur Seine, France, October 1991.

Boys, Randy and Katherine Palko, "Automation and Dynamic Allocation:

Engineering Issues and Approaches," Proceedings of the TEEE 1988 National
Aerospace and Electronics Conference, IEEE Service Center, Piscataway, NJ,
1988. ‘

Breuker, Joost, et al., "A Shell for Intelligent Help Systems," Proceedings of

the 10th International Joint Conference on Artificial Intelligence, Milan,
Italy, August 23-28, 1987.

Briot, Jean-Pierre and Pierre Cointe, "A Uniform Model for Object—Oriented
Languages Using the Class Abstraction," Proceedings of the 10th

International Joint Conference on Artificial Intelligence, Milan, Italy,
August 23-28, 1987.

Brower, Ronald W., Larry E. French, and Richard W. Linderman, "LISP Garbage
Collection Using Content—Addressable Memory," Proceedings of the IEEE 1987
National Aerospace and Electronics Conference, IEEE Service Center,
Piscataway, NJ, 1987.

Brown, David and John M. Carson, "Embedded Expert Systems for Avionics

Applications," IEEE/AIAA Digital Avionics Systems Conference Proceedings,
IEEE Service Center, Piscataway, NJ, 1986.

Brubaker!, David L., "Fuzzy-logic Basics: Intuitive Rules Replace Complex Math,"
EDN, Volume 37, No. 13, June 18, 1992.

Brubaker?, David L., "Fuzzy-logic System Solves Control Problem," EDN, Volume 37,
No. 13, June 18, 1992.

Brubaker, David L., "Everything You Always Wanted to Know About Fuzzy Logic,"
EDN, March 31, 1993.

Brule, James F., "Fuzzy Systems - A Tutorial," 1985.

Butler, G. F. and M. J. Corbin, "FLEX: FORTRAN Library for Expert Systems,” RAE
Working Paper, MM 273/88, December 1988.

Carlton, Kyp A., "Artificial Intelligence Supportability," Proceedings of the
IEEE 1987 National Aerospace and Electronics Conference, IEEE Service
Center, Piscataway, NJ, 1987.

Carpenter, Gail A. and Stephen Grossberg, "A Self-Organizing Neural Network for
Supervised Learning, Recognition, and Prediction," IEEE Communications,
Volume 30, No. 9, September 1992.

20-103

Chappell, Alan R., "Knowledge—Based Reasoning in the Paladin Tactical Decision

Generation System," IEEE/AIAA 11th Digital Avionics Systems Conference
Proceedings, IEEE Service Center, Piscataway, NJ, 1992.

Charniak, Eugene and Drew McDermott, Introduction to Artificial Intelligence,
Addison-Wesley Publishing Company, Reading, MA, 1985.

Chen, David C., "An Expert Planner for the Dynamic Flight Environment,"
Proceedings of the IEEE 1985 National Aerospace and Electronics
Conference, IEEE Service Center, Piscataway, NJ, 1985.

Clarkson, Douglas, "Living Computers," Electronics World and Wireless World,
March 1990.

Clocksin, W. F. and C. F. Mellish, Programming in Prolog, Springer-Verlag
Berlin, Heidelberg, Germany, 1984.

Coats, Pamela K., "Why Expert Systems Fail," Uma Gupta ed., Validating and
Verifving Knowledge-Based Systems, IEEE Computer Society Press, Los
Alamitos, CA, 1991.

Cochran, Keith G., "Artificial Intelligence Techniques Applied to Vehicle

Management System Diagnostics," IEEE/AJAA 10th Digital Avionics Systems
Conference Proceedings, IEEE Service Center, Piscataway, NJ, 1991.

Cohen, Paul R., Heuristic Reasoning About Uncertainty: An _Artificial
Intelligence Approach, Pittman Advanced Publishing Program, Boston, MA,
1985.

Coleman, Lisa A., "Lockheed First to Test Neural Net Chip," Military and

Aerospace Electronics, Volume 4, No. 3, March 15, 1993.

Conner, Doug, "Designing a Fuzzy Logic Control System," EDN, Volume 38, No. 7,
March 1993.

Cox, Earl, "Fuzzy Fundamentals," IEEE Spectrum, Volume 29, No. 10, October 1992.

Cox, Earl, "Adaptive Fuzzy Systems," IEEE Spectrum, Volume 30, No. 2, February
1993.

Culbert, Chris, Gary Riley, and Robert T. Savely, "Approaches to the
Verification of Rule-Based Expert Systems," Uma G. Gupta ed., Validating
and Verifying Knowledge—Based Systems, IEEE Computer Society Press, Los
Alamitos, CA, 1991.

Curran, Jim, Trends in Advanced Avionics, Iowa State University Press, 1992.

Day, P. 0. and M. K. Hook, "An AI-Based Fault Diagnosis Aid for Complex
Electronic Systems," IEEE/ATAA 8th Digital Avionics Systems Conference
Proceedings, IEEE Service Center, Piscataway, NJ, 1988.

20-104

Daysh, Colin, et al., "A NASA/RAE Cooperation in the Development of a Real-Time
Knowledge Based Autopilot," AGARD Conference Proceedings 499: Machine
Intelligence for Aerospace Electronic Systems, Advisory Group for
Aerospace Research and Development, Neuilly Sur Seine, France, May 1991.

Decision Aiding System for Commercial Aircraft, Sextant Avionique Flight Control
Systems Division, Briefing to FAA Technical Center, Atlantic City
International Airport, NJ, February 1993.

Deeb, Joyce M. and Andrew G. Philpot, "Data Management in Large-Scale AI
Systems," Proceedings of the IEEE 1988 National Aerospace and Electronics
Conference, IEEE Service Center, Piscataway, NJ, 1988.

Delgrande, James P., "A Formal Approach to Learning from Examples," Proceedings
of the 10th International Joint Conference on Artificial Intelligence,

Milan, Italy, August 23-28, 1987.

Denning, Peter J., "The Science of Computing," American Scientist, Volume 74,
January-February 1986.

DeWalt, Michael, Avionics Training Seminar, Kansas City, MO, December 8-9, 1992.
DOD-STD-2167A, "Defense System Software Development," February 29, 1988.

Donker, J. C., "Reasoning with Uncertain and Incomplete Information in Aerospace
Applications," AGARD Conference Proceedings 499: Machine Intelligence for

Aerospace Electronic Systems, Advisory Group for Aerospace Research and
Development, Neuilly Sur Seine, France, May 1991.

Dreyfus, Hubert and Stuart Dreyfus, "Why Computers May Never Think Like People,"
Technology Review, January 1986.

Dupuy, Serge, "Contribution of Expert Systems to Avionics Advance Application on
AS30 Laser Weapon System," Software Engineering and its Application to
Avionics, AGARD-CP-439, Advisory Group for Aerospace Research and
Development, Neuilly Sur Seine, France, November 1988.

Eimer, Erhard O., "Decision Aids: Disasters Waiting to Happen?" Proceedings of
the IEEE 1987 National Aerospace and Electronics Conference, IEEE Service
Center, Piscataway, NJ, 1987.

Elwell, D., et al., Avionic Data Bus Integration Technology, DOT/FAA/CT-91/19,
U.S. Department of Transportation, Federal Aviation Administration,
December 1991.

Elwell, D. and N. VanSuetendael, Software Quality Metrics, DOT/FAA/CT-91/1, U.S.
Department of Transportation, Federal Aviation Administration, 1991.

Endres, Gunther, "Towards the ‘'Intelligent’ Aircraft," Interavia Aerospace
Review, Volume 46, April 1991.

20~105

Engelmore, Robert and Tony Morgan, Blackboard Systems, Addison-Wesley Publishing
Company, New York, NY, 1988.

Farrell, Robert, "Intelligent Case Selection and Presentation," Proceedings of

the 10th International Joint Conference on Artificial Intelligence, Milan,
Italy, August 23-28, 1987,

Fey, J., et al., "Expert System for the Tornado Ground-Based Check-Out System,"
AGARD Conference Proceedings 499: Machine Intelligence for Aerospace
Electronic Systems, Advisory Group for Aerospace Research and Development,
Neuilly Sur Seine, France, May 1991.

Feyock, Stefan and Stamos Karamouzis, "Design of an Intelligent Information
System for In-Flight Emergency Assistance," 1991 Goddard Conference on

Space Applications of Artificial Intelligence, NASA Conference Proceeding
CP-3110, May 1991.

Feyock, Stefan and Dalu Li, "Simulation-Based Reason about the Physical
Propagation of Fault Effects," 1990 Goddard Conference on Space

Applications of Artificial Intelligence, NASA Conference Proceeding CP-
3068, May 1990.

Fikes, Richard and Tom Kehler, "The Role of Frame—-Based Representation in
Reasoning," Communications of the ACM, Volume 28, No. 9, September 1985.

A Framework for Fmbedded Avionics Expert Systems, Boeing Advanced Systems Public

Relations Sales Brochure, Seattle, WA.

Frankovich, Ken, Ken Pedersen, and Stanley Bernsteen, "Expert System
Applications to the Cockpit of the ’'90s," Proceedings of the IEEE 1985

National Aerospace and Electronics Conference, IEEE Service Center,
Piscataway, NJ, 1985.

French, Scott W. and David O. Hamilton, Expert Systems V&V Guidelines Workshop,
February 1992.

Friedland, Peter, "Special Section on Architectures for Knowledge-Based
Systems," Communications of the ACM, Volume 28, No. 9, September 1985.

Frisch, Alan M., "Inference Without Chaining," Proceedings of the 10th
International Joint Conference on Artificial Intelligence, Milan, Italy,
August 23-28, 1987.

Frueh, George T., "Semiconductor Highlight," Electronic_Component News, Volume
37, No. 7, July 1993.

The Fuzzy Source, Volume 2, Issue 1, Togai Infralogic, Inc., Irvine, CA, 1992.

Gabriel, Richard F., "Cockpit Automation," Kim M. Cardosi and M. Stephen Huntley
eds., Human Factors for Flight Deck Certification Personnel, Draft, DOT-
VNTSC-FAA-93-4, U.S. Department of Transportation, Research and Special
Programs Administration, May 1993.

20-106

Galdes, Deborah K. and Philip J. Smith, "Building an Intelligent Tutoring
System: Some Guidelines from a Study of Human Tutors," Proceedings of the

Human Factors Society 34th Apnual Meeting, Santa Monica, CA, 1990.

Geddes, Norman D., "Verification and Validation Testing of the Pilot's
Associate," IEEE/ATAA 10th Digital Avionics Systems Conference
Proceedings, IEEE Service Center, Piscataway, NJ, 1991.

Genesereth, Michael R. and Matthew L. Ginsberg, "Logic Programming,"
Communications of the ACM, Volume 28, No. 9, September 1985.

Gibbons, Greg D., et al., "Expert Systems: They Ain’t What They Used to Be!"
Proceedings of the IEEE 1988 National Aerospace and FElectronics
Conference, IEEE Service Center, Piscataway, NJ, 1988.

Gibbons, Greg D., Jonathan S. Abel, and Jill V. Josselyn, "ASAP: Al-Based
Situation Assessment and Planning," Proceedings of the IEEE 1988 National

Aerospace and Electronics Conference, IEEE Service Center, Piscataway, NJ,
1988.

Glickstein, Ira, Steve Ruberg, and Lt. John Marsh, "Database Management for
Integrated Avionics System," Proceedings of the National Aerospace and
Electronics Conference, IEEE Service Center, Piscataway, NJ, 1992,

Glover, Richard D., "Application Experience with the NASA Aircraft Interrogation
and Display System: A Ground-Support Equipment for Digital Flight
Systems," IEEE/AIAA Sth Digital Avionics Systems Conference, Seattle, WA,
October 31-November 3, 1983.

Glover, Richard D. and Richard R. Larson, "A Knowledge Based Application of the
Extended Aircraft Interrogation and Display System," NASA Technical
Memorandum 4327, Dryden Flight Research Facility, Edwards, CA, October
1991.

Gordon, Sallie E., Rhonda A. Kinghorn, and Kim A. Schmierer, "Representing
Expert Knowledge for Instructional System Design: A Case Study,"
Proceedings of the Human Factors Society 35th Annual Meeting, Santa
Monica, CA, 1991.

Gordon, Sallie E. and Vickie Lewis, "Knowledge Engineering for Hypertext
Instructional Systems," Proceedings of the Human Factors Society 34th
Annual Meeting, Santa Monica, CA, 1990.

Graham, Joyce M., "An Intelligent Spatial Database System for Interaction with
a Real-Time Piloting Expert System," Proceedings of the IEEE 1987 National

Aerospace and Electronics Conference, IEEE Service Center, Piscataway, NJ,
1987.

Green, Christopher J. R., "On the Use of Requirements in the Development of
Knowledge—-Based Systems," Uma G. Gupta ed., Validating and Verifving
Knowledge—Based Systems, IEEE Computer Society Press, Los Alamitos, CA,
1991.

20-107

Green, Christopher J. R. and Marlene M. Keyes, "Verification and Validation of
Expert Systems," Uma G. Gupta ed., Validating and Verifying Knowledge-
Based Systems, IEEE Computer Society Press, Los Alamitos, CA, 1991.

Grimshaw, Capt. Jeffrey D. and Craig S. Anken, "A Distributed Environment for
Testing Cooperating Expert Systems," AGARD Conference Proceedings 499:
Machine Intelligence for Aerospace Electronic Systems, Neuilly Sur Seine,
France, September 1991.

Hall, Lawrence O. and Abraham Kandel, "The Evolution from Expert Systems to
Fuzzy Expert Systems," Fuzzy Expert Systems, Abraham Kandel ed., CRC
Press, Boca Raton, FL, 1992.

Hammer, John, M., "Verification and Validation of Knowledge Bases in Associate
Systems," DARPA Symposium on Associate Technology, Fairfax, VA, June 6-7,

1991.

Hammerstrom, Dan, "Working with Neural Networks," IEEE Spectrum, Volume 30, No.
7, July 1993.

Harvey, David S., "Artificial Intelligence in Combat Avionics," Avionics, Volume

17, No. 1, January 1993.

Hayes-Roth, Frederick, "Rule-Based Systems," Communications of the ACM, Volume
28, No. 9, September 1985.

Hertz, John, Anders Krogh, and Richard G. Palmer, Introduction to the Theory of
Neural Computation, Addison Wesley Publishing Company, Redwood City, CA,

1991.

Hillman, David V., "Integrating Neural Nets and Expert Systems," Al Expert, June
1990.

Hillman, Donald J., "Artificial Intelligence," Human Factors, Volume 27, No. 1,
1985.

Holla, K. and B. Benninghofen, "A Threat Management System," AGARD Conference
Proceedings 499: Machine Intelligence for Aerospace Electronic Systems,
Advisory Group for Aerospace Research and Development, Neuilly Sur Seine,
France, September 1991.

Hui, Patrick J. and Amiya R. Nayak, "EXNAV: An Intelligent Sensor Integrator,"”
Proceedings of the IEEE 1988 National Aerospace and Electronics
Conference, IEEE Service Center, Piscataway, NJ, 1988.

Humphrey, Timothy L., "Using PROLOG in Natural Language Systems," Proceedings of
the IEEE 1985 National Aerospace and Electronics Conference, IEEE Service
Center, Piscataway, NJ, 1985. '

Hunter, Lawrence and David J. States, "Bayesian Classification of Protein
Structure," IEEE Expert, Volume 7, No. &4, August 1992.

20-108

The Huntington Group, Huntington Technical Brief, No. 34, Menlo Park, CA,
January 1993.

Iline, Herman and Henry Kanoui, "Extending Logic Programming to Object
Programming: The System LAP," Proceedings of the 10th International Joint
Conference on Artificial Intelligence, Milan, Italy, August 23-28, 1987.

Improving Aircraft Safety, National Academy of Sciences, Washington, DC, 1980.

Intel! Corporation, 80170NW — Electrically Trainable Analog Neural Network, Santa
Clara, CA, May 1990.

Intel? Corporation, "New Wave" Computing? - An Introduction to Neural Networks,
November 1990.

Iorgulescu, Daniela T., David F. Giere, and Carol S. Giffen, "Artificial

Expertise in Systems Engineering," IEEE/ATAA 10th Digital Avioniecs Systems
Conference Proceedings, IEEE Service Center, Piscataway, NJ, 1991.

Irwin, J. David, Basic Engineering Circujit Analysis, 2nd ed.
Publishing Company, New York, NY, 1987.

, Macmillan

Jafar, Musa and A. Terry Bahill, "Interactive Verification of Knowledge—Based
Systems," IEEE Expert, Volume 8, No. 1, 1993,

Janowitz, Joan, Handbook-Volume III Digital Systems Validation Book Plan,
DOT/FAA/CT-93/16, U.S. Department of Transportation, Federal Aviation
Administration, July 1993.

/

Johnson, Sally C. and Ricky W. Butler, "Design for Validation," IEEE/AIAA 10th
Digital Avionics Systems Conference Proceedings, IEEE Service Center,
Piscataway, NJ, 1991.

Johnson, William B., "Advanced Technology for Aviation Maintenance Training: An
Industry Status Report and Development Plan," Proceedings of the Human
Factors Society 34th Annual Meeting, Santa Monica, CA, 1990.

Johnson, William B. and Jeffrey E. Norton, "Integrated Systems for Training,

Aiding, and Information Retrieval," Proceedings for the East-West
Conference in Emerging Computer Technology in Education, Moscow, Russia,
1992,

Kang, Yue and A. Terry Bahill, "A Tool for Detecting Expert System Errors," Uma
G. Gupta ed., Validating and Verifying Knowledge-Based Systems, IEEE
Computer Society Press, Los Alamitos, CA, 1991.

Kartalopoulos, Stamatios V., "A Plateau of Performance?,"” IEEE Communications,
Volume 30, No. 9, September 1992.

Kearsley, G. P., ed., Artificial Intelligence and Instruction, Addison-Wesley
Publishing Company, Reading, MA, 1987.

20-109

Keller, Forrest L., "Basic Electronic Systems Certification," IEEE/AIAA 11th

Digital Avionics Systems Conference Proceedings, IEEE Service Center,
Piscataway, NJ, 1992,

Khaksari, Gholam H., "Expert Diagnostic System," The First International

Conference on Industrial & Engineering Applications of Artificial
Intelligence & Expert Systems, June 1-3, 1988.

Klein, Gary and Roberta Calderwood, "Human Factors Considerations for Expert

Systems," Proceedings of the IFFEE 1986 National Aerospace and Electronics

Conference, IEEE Service Center, Piscataway, NJ, 1986.

Klimasauskas, Casimir C., "Neural Networks: An Engineering Perspective,” I1EEE
Communications, Volume 30, No. 9, September 1992.

Kosko, Bart, Neural Networks and Fuzzy Systems, Prentice Hall Publishing
Company, Englewood Cliffs, NJ, 1992.

Krogmann, Uwe K., "Introduction to Neural Computing and Categories of Neural
Network Applications to Guidance, Navigation, and Control," AGARD Lecture
Series 179: Artificial Neural Network Approaches in Guidance and Control,
Advisory Group for Aerospace Research and Development, Neuilly Sur Seine,
France, September 1991.

Lawler, R. W. and M. Yazdani, eds., Artificial Intelligence and Education Volume

1: Learning Environments and Tutoring Systems, Ablex, Norwood, NJ, 1987.

Lawrence, Jeannette, Introduction to Neural Networks, Sylvia Ludeking ed.,
California Scientific Software, 1991.

Layer, Kevin D. and Chris Richardson, "LISP," Communications of the ACM, Volume
34, No. 9, September 1991.

Lea, Robert N., "Application of Fuzzy Sets to Rule—Based Expert System
Development," Telematics and Informatics, Volume 6, Nos. 3 and 4, 1989.

Leavitt, C. A. and D. M. Smith, "Integrated Dynamic Planning in the Pilot’s
Associate," AIAA Guidance, Navigation, and Control Conference, Part 1,
Boston, MA, August 14-16, 1989.

Lee, Chuen—Chien, "A Self-Learning Rule-Based Controller Employing Approximate
Reasoning and Neural Net Concepts," International Journal of Intelligent

Systems, Volume 6, 1991.

Leeper, Kenneth R., "Artificial Intelligence Programming in Ada," IEEE/ATAA 9th
-Digital Avionics Systems Conference Proceedings, IEEE Service Center,
Piscataway, NJ, 1990.

Legg, Gary, "Special Tools and Chips Make Fuzzy Logic Simple," EDN, Volume 37,
No. 14, July 6, 1992.

20-110

Legg, Gary, "Microcontrollers Embrace Fuzzy Logic," EDN, Volume 38, No. 19,
September 1993.

Leinweber, David and David Carleton, "The PICON Real-Time Expert System Tool,"
Proceedings of the TEEE 1986 National Aerospace and Electronics
Conference, IEEE Service Center, Piscataway, NJ, 1986.

Lenorovitz, David R. and Ray A. Reaux, "Integrating Human Factors Guidance
Information within the USI Design/Rapid Prototyping Process," Proceedings

of the IEEE 1986 National Aerospace and Electronics Conference, IEEE
Service Center, Piscataway, NJ, 1986.

Level5 Object User'’s Guide, Information Builders, Inc., New York, NY, 1992.

Levi, Keith R., et al., "An Explanation-Based-Learning Approach to Knowledge
Compilation," IEEE Expert, Volume 7, No. 3, June 1992.

Levine, Robert I., Diane E. Drang, and Barry Edelson, A Comprehensive Guide to
Al and Expert Systems, McGraw-Hill Publishing Company, New York, NY, 1986.

Lim, Ee-Peng and Vladimir Cherkassky, "Semantic Networks and Associative
Databases," IEEE Expert, Volume 7, No. 4, August 1992,

Lischke, Michael P. and Kenneth L. Meyer, "TEAMS: Technical Aircraft Expert

Maintenance System," Proceedings of the IEEE 1992 National Aerospace and
Electronics Conference, IEEE Service Center, Piscataway, NJ, 1992.

Lizza, Carl, Sheila Banks, and Michael A. Whelan, "Pilot’s Associate: Evolution

of a Functional Prototype," AGARD Conference Proceedings 499: Machine
Intelligence for Aerospace Electronic Systems, Advisory Group for
Aerospace Research and Development, Neuilly Sur Seine, France, September
1991.

Lizza, Carl and Carl Friedlander, "The Pilot’s . Associate: A Forum for the
Integration of Knowledge Based Systems and Avionics," Proceedings of the
IEEE 1988 National Aerospace_and Electronics Conference, IEEE Service
Center, Piscataway, NJ, 1988.

Lovesey, E. J. and R. I. Davis, "Integrating Machine Intelligence into the
Cockpit to Aid the Pilot," AGARD Conference Proceedings 499: Machine
Intelligence for Aerospace Electronic Systems, Advisory Group for
Aerospace Research and Development, Neuilly Sur Seine, France, September
1991.

MacDonald, Jim and Klaus K. Obermeier, "Towards a Taxonomy for Knowledge
Representation Schemas," Proceedings of the IEEE 1986 National Aerospace
and Electronics Conference, IEEE Service Center, Piscataway, NJ, 1986.

Madni, Azad M., "HUMANE: A Knowledge-Based Simulation Environment for Human-
Machine Function Allocation," Proceedings of the IEEE 1988 National

Aerospace and Electronics Conference, IEEE Service Center, Piscataway, NJ,
1988.

20-111

Manheimer, Jerry M. and Thomas A. Kanarski, "The Application of Psychological
Scaling Techniques in Modeling Expert Knowledge," Proceedings of the IEEE

1986 National Aerospace and Electronics Conference, IEEE Service Center,
Piscataway, NJ, 1986.

Marcot, Bruce, "Testing Your Knowledge Base," Uma G. Gupta ed., Validating and
Verifving Knowledge-Based Systems, IEEE Computer Society Press, Los
Alamitos, CA, 1991.

Marcus, Sandra, "Salt: A Knowledge Acquisition Tool that Checks and Helps Test

a Knowledge Base," Uma G. Gupta ed., Validating and Verifying Knowledge—
Based Systems, IEEE Computer Society Press, Los Alamitos, CA, 1991.

Masotto, Tom, Carol Babikyan, and Richard Harper, "Knowledge Representation into
Ada Parallel Processing," NASA Contractor Report 187451, NASA Langley
Research Center, Hampton, VA, July 1990.

McCay, Scott, "CLIM: The Common Lisp Interface Manager," Communications of the
ACM, Volume 34, No. 9, September 1991.

McCoy, Michael S. and Randy M. Boys, "Human Performance Models Applied to
Intelligent Decision Support Systems," Proceedings of the IEEE 1987/
National Aerospace and FElectronics Conference, IEEE Service Center,
Piscataway, NJ, 1987.

McManus, John W., "Design and Analysis Tools for Concurrent Blackboard Systems,"
IEEE/AJAA 10th Digital Avionics Systems Conference Proceedings, IEEE
Service Center, Piscataway, NJ, 1991.

McNeese, Michael D., "Humane Intelligence: A Human Factors Perspective for’
Developing Intelligent Cockpits," Proceedings of the IEEE 1986 National
Aerospace and Electronics Conference, IEEE Service Center, Piscataway, NJ,
1986.

McNeese, Michael D. and Brian S. Zaff, "Knowledge as Design: A Methodology for
Overcoming Knowledge Acquisition Bottlenecks in Intelligent Interface
Design," Proceedings of the Human Factors Society 35th Annual Meeting,
Santa Monica, CA, 1991.

McNulty, Christa, "Knowledge Engineering for a Piloting Expert System,”
Proceedings of the IEEE 1987 National Aerospace and Electronics
Conference, IEEE Service Center, Piscataway, NJ, 1987.

Mehrotra, Mala, "Rule Groupings: A Software Engineering Approach Towards
Verification of Expert Systems," NASA Contractor Report 4372, NASA Langley
Research Center, Hampton, VA, May 1991.

Mehrotra, Mala and Chris Wild, "Multi-Viewpoint Clustering Analysis," Workshop
on Verification, Validation, and Testing of Intelligent Systems, 9th IEEE
Conference on Artificial Intelligence for Applications, Orlando, FL, March
2, 1993.

20-112

Minges, Mark E., "Integrated Communications, Navigation, Identification,
Avionics (ICNIA) Expert Systems for Fault Tolerant Avionics," AGARD

Conference Proceedings 499: Machine Intelligence for Aerospace Electronic
Systems, Advisory Group for Aerospace Research and Development, Neuilly

Sur Seine, France, September 1991.
Mitsubishi Electriec, Product Literature, Japan, 1992,
Mitta, Deborah, Newton C. Ellis, and Dick B. Simmons, "Human Factors Data:

Knowledge Sources for Intelligent Design Associates," Proceedings of the
Human Factors Society 34th Annual Meeting, Santa Monica, CA, 1990.

Miyamoto, Sadaaki, Fuzzy Sets in Information Retrieval and Cluster Analysis,
Kluwer Academic Publishers, Boston, MA, 1990.

Morley, Richard E. and William A. Taylor, "What is Artificial Intelligence?,"

Digital Design, April 1986.

Morley, Richard E. and William A. Taylor, "Artificial Intelligence Basics:
Hardware Follows Software," Digital Design, May 1986.

Morley, Richard E. and William A. Taylor, "Why Bother with Expert Systems?,"
Digital Design, July 1986.

Muller, Hans, "LispView: Leverage Through Integration," Communications of the
ACM, Volume 34, No. 9, September 1991.

Murphy, Thomas, "AI Apprentice," AI Expert, Volume 8, No. 4, April 1993.

Naser, Joseph A., "Nuclear Power Plant Expert System Verification and
Validation," Uma G. Gupta ed., Validating and Verifying Knowledge—Based
Systems, IEEE Computer Society Press, Los Alamitos, CA, 1991.

The National Plan for Aviation Human Factors, Volume 1, Draft, U.S. Department
of Transportation, Federal Aviation Administration, April 1991.

The National Plan for Aviation Human Factors, Volume 2, Draft, U.S. Department
of Transportation, Federal Aviation Administration, November 1990.

Nelson, Dale E. and Steven K. Rogers, "A Taxonomy of Neural Network Optimality,"
Proceedings of the TEEE 1992 National Aerospace and Electronics
Conference, IEEE Service Center, Piscataway, NJ, 1992.

NeuroDynamx Literature, NDX Neural Accelerators, NeuroDynamx, Inc., Boulder, CO,
1994,

Ng, Andrew, "A Cooperative Expert System Architecture for Embedded Avionics,"
Proceedings of the TEEE 1988 National Aerospace and Electronics
Conference, IEEE Service Center, Piscataway, NJ, 1988.

Nilsson, Nils J., Principles of Artificial Intelligence, Tioga Publishing
Company, Palo Alto, CA, 1980.

20-113

Nordwall, Bruce D., "Cockpit Safety Researchers Eye Verbal Advice System,"
Aviation Week & Space Technology, Volume 137, No. 14, October 5, 1992.

Normile, Dennis, "Mimicking the Brain," Popular Science, November 1992.

Norton, J. E. and W. B. Johnson, "Microcomputer Intelligence for Technical
Training (MITT): The Evolution of an Intelligent Tutoring System,"
Proceedings, NASA 1991 Conference on Intelligent Computer—Aided Training,
Houston, TX, 1991.

Obermeier, Klaus K. and Janet J. Barron, "Time to Get Fired Up," Byte, August
1989.

O’Keefe, Robert M., Osman Balci, and Eric P. Smith, "Validating Expert System

Performance,"” Uma G. Gupta ed., Validating and Verifying Knowledge—Based
Systems, IEEE Computer Society Press, Los Alamitos, CA, 1991.

O'Keefe, Robert M. and Daniel O'Leary, "Expert System Verification and
Validation: A Survey and Tutorial," Workshop on Verification, Validation,
and Testing of Intelligent Systems, 9th IEEE Conference on Artificial

Intelligence for Applications, Orlando, FL, March 2, 1993.

0'Leary, Daniel E., "Measuring the Quality of Computer Model Performance,"
Workshop on Verification, Validation, and Testing of Intelligent Systems,
9th IEEE Conference on Artificial Intelligence for Applications, Orlando,
FL, March 2, 1993,

Omron Electronics, Inc., "An Introduction to Fuzzy Logic and its Application in
Control Systems," Fuzzy logic, a 21st Century Technology, 1991.

Ostgaard, John C. and D. Reed Morgan, "PAVE PILLAR and PAVE PACE: Avionics
System Architecture for the 21st Century," ERA Seminar Proceedings:
Military Avionics Architectures for Today and Tomorrow, ERA Report No. 88~
0437, ERA Technology Ltd., Surrey, England, 1989.

Ovenden, C. R., "AI Applications to Tactical Decision Aids," IEEE/AIAA 38th
Digital Avionics Systems Conference Proceedings, IEEE Service Center,
Piscataway, NJ, 1988.

Palko, Katherine and Randy Boys, "Augmenting the Pilot/Vehicle Interface Through
Capability Assessment," Proceedings of the IEEE 1987 National Aerospace
and Electronics Conference, IEEE Service Center, Piscataway, NJ, 1987.

Papp, M. L., W. R. Braisted, and R. F. Taylor, "A Prototype Expert System for
Analysis of Turbine Engine Components," Proceedings of the IEEE 1992
National Aerospace and FElectronics_ Conference, IEEE Service Center,
Piscataway, NJ, 1992.

Pearce, Michael, et al., "Case-Based Design Support," IEEE Expert, 1992.

20-114

Pederson, Ken, "Part I: The Well-Structured Rule, the Basic Building Block for

Knowledge Bases," Uma Gupta ed., Validating and Verifying Knowledge-Based
Systems, IEEE Computer Society Press, Los Alamitos, CA, 1989.

Pederson, Ken, "Well-Structured Knowledge Bases: Parc II," Uma Gupta ed.,

Validating and Verifying Knowledge-Based Systems, IEEE Computer Society
Press, Los Alamitos, CA, 1989.

Pederson, Ken, "Well-Structured Knowledge Bases: Part III," Uma Gupta ed.,

Validating and Verifying Knowledge~Based Systems, IEEE Computer Society
Press, Los Alamitos, CA, 1989.

Penn, Brian S., "Design Considerations in the Development of the Meta-Expert
System," Proceedings of the IEEE 1986 National Aerospace and Electronics
Conference, IEEE Service Center, Piscataway, NJ, 1986.

Perlin, Mark, Revision of "An OPS5 Primer: Introduction to Rule-Based Expert
Systems," by Porter D. Sherman and John C. Martin, IEEE Communications,
Volume 31, No. 1, January 1993,

Piers, M. A. and J. C. Donker, "A Knowledge Based Assistant for Diagnosis in
Aircraft Maintenance," AGARD Conference Proceedings 449: Machine
Intelligence for Aerospace FElectronic Systems, Advisory Group for
Aerospace Research and Development, Neuilly Sur Seine, France, September
1991.

Pilet, S. C. and R. 0. Stenerson, "Avionics Expert Systems: The Transition to
Embedded Systems," Proceedings of the IEEE 1987 National Aerospace and
Electronics Conference, IEEE Service Center, Piscataway, NJ, 1987.

Plant, Robert T., "Pattern Directed Inference Systems: A Development
Methodology," Workshop on Verification, Validation, and Testing of
Intelligent Systems, 9th IEEE Conference on Artificial Intelligence for
Applications, Orlando, FL, March 2, 1993.

Plant, Robert T. and Panagiotis Tsoumpas, "An Integrated Methodology for

Knowledge—Based System Development, " Workshop on Verification, Validation,
and Testing of Intelligent Systems, 9th IEEE Conference on Artificial

Intelligence for Applications, Orlando, FL, March 2, 1993.

Plutowski, Mark, "VOSS-VHSIC Hosted Expert Systems," Proceedings of the IEEE
1986 National Aerospace and Electronics Conference, IEEE Service Center,
Piscataway, NJ, 1986.

Pohlmann, Lawrence D. and J. Roland Payne, "Pilot’s Associate Demonstration One:
A Look Back and Ahead," Proceedings of the IEEE 1986 National Aerospace
and Electronics Conference, IEEE Service Center, Piscataway, NJ, 1986.

Polson, Martha Campbell, "Status and Future Directions of Intelligent Tutoring
Systems," Proceedings of the Human Factors Society 33rd Annual Meeting,
Santa Monica, CA, 1989.

20-115

Prevot, T., R. Onken, and H. L. Dudek, "Knowledge—-Based Planning for Controlled
Airspace Flight Operation as Part of a Cockpit Assistant,” AGARD
Conference Proceeding 504: Air Vehicle Mission Control and Management,
Advisory Group for Aerospace Research and Development, Neuilly Sur Seine,
France, October 1991,

Psotka, Joseph, "Advancing the Mind/Machine Interface: Qualitative Simulations,
Hypertext, and Natural Language Processing," Proceedings of the Human
Factors Society 33rd Annual Meeting~1989, Santa Monica, CA, 1989.

Pukite, P. R., J. Pukite, and D. S. Barnhart, "Expert System for Redundancy and

Reconfiguration Management," Proceedings of the IEEE 1992 National
Aerospace and Electronics Conference, IEEE Service Center, Piscataway, NJ,
1992.

Rao, Ming and Tsung-Shann Jiang, "A New Method to Design Intelligent Control
Systems," Proceedings of the IEEE 1988 National Aerospace and Electronics
Conference, IEEE Service Center, Piscataway, NJ, 1988.

Rich, Elaine and Kevin Knight, Artificial Intelligence, 2nd ed., McGraw-Hill
Publishing Company, New York, NY, 1991.

Roberts, K., "TACAID - A Knowledge Based System for Tactical Decision Making,"
AGARD Conference Proceedings 499; Machine Intelligence for Aerospace
Electronic Systems, Advisory Group for Aerospace Research and Development,
Neuilly Sur Seine, France, September 1991.

Rocha, A. F., et al., "The Physiology of the Expert System," Fuzzy Expert
Systems, Abraham Kandel ed., CRC Press, Boca Raton, FL, 1992.

Rock, Denny, Don Malkoff, and Ron Stewart, "AT and Aircraft Health Monitoring,"
Al Expert, February 1993.

Rolston, David W., Principles of Artificial Intelligence and Expert Systems
Development, McGraw-Hill Publishing Company, New York, NY, 1988.

Roth, Al, "The Practical Application of PROLOG," AI Expert, Volume 8, No. 4,
April 1993.

Rothman, Michael J., "IJCNN '92," IEEE Expert, Volume 8, No. 1, February 1993.

Rouse, William B., Norman D. Geddes, and Renwick E. Curry, "An Architecture for
Intelligent Interfaces: Outline of an Approach to Supporting Operators of
Complex Systems," Proceedings of the IFEE 1986 National Aerospace and
Electronics Conference, IEEE Service Center, Piscataway, NJ, 1986.

Rouse, William B., Norman D. Geddes, and John M. Hammer, "Computer—Aided Fighter
Pilots," IEEE Spectrum, Volume 27, No. 3, March 1990.

RTCA/DO-160C, "Environmental Conditions and Test Procedures for Airborne
Equipment," Radio Technical Commission for Aeronautics, Washington, DC,
December 1989.

20-116

RTCA/DO-178B, "Software Considerations in Airborne Systems and Equipment
Certification,” Radio Technical Commission for Aeronautics, Washington,
DC, December 1992.

RTCA Paper No. 548-93/5C180-18, Radio Technical Commission for Aeronautics,
Washington, DC, February 2, 1994,

Rudolph, F. M., D. A. Homoki, and G. A. Sexton, "Diverter' Decision Aiding for
In-Flight Diversions," NASA Contractor Report 182070, NASA Langley
Research Center, Hampton, VA, August 1990.

Rushby, John, "Quality Measures and Assurance for AI Software," NASA Contractor
Report 4187, NASA Langley Research Center, Hampton, VA, October 1988.

Rushby, John and Judith Crow, "Evaluation of an Expert System for Fault
Detection, Isolation, and Recovery in the Manned Maneuvering Unit," NASA
Contractor Report 187466, NASA Langley Research Center, Hampton, VA,
December 1990.

Rushby, John and R. Alan Whitehurst, "Formal Verification of AI Software," NASA
Contractor Report 181827, NASA Langley Research Center, Hampton, VA,
February 1989.

Ryder, Joan M., et al., "An Integrated Embedded Training and Decision Aiding
Design Methodology," Proceedings of the Human Factors Society 34th Annual
Meeting, Santa Monica, CA, 1990.

Sadeghi, Tom and Gerry Mayville, "Fault-Tolerant, Flight-Critical Control
Systems," AGARD Conference Proceedings 456: Fault Tolerant Design
Concepts for Highly Integrated Flight Critical Guidance and Control
Systems, Advisory Group for Aerospace Research and Development, Neuilly
Sur Seine, France, October 13, 1989.

Savant, Jr., C. J., Martin §. Roden, and Gordon L. Carpenter, Electronic Circuit

Design, An Engineering Approach, The Benjamin/Cummings Publishing Company,
Inc., Menlo Park, CA, 1987

Schaefer, B. A., et al., "A Knowledge-Based Intelligent Tutoring System:
ACQUIRE™-ITS," AGARD Conference Proceedings 499: Machine Intelligence for

Aerospace Electronic Systems, Advisory Group for Aerospace Research and
Development, Neuilly Sur Seine, France, September 1991.

Schultz, Roger D. and James R. Geissman!, "Bridging the Gap Between Static and

Dynamic Verification,"” Uma G. Gupta ed., Validating and Verifying
Knowledge—-Based Systems, IEEE Computer Society Press, Los Alamitos, CA,
1991.

Schultz, Roger D. and James R. Geissman?, "Verification and Validation of Expert
Systems," Uma G. Gupta ed., Validating and Verifying Knowledge—Based
Systems, IEEE Computer Society Press, Los Alamitos, CA, 1991,

20-117

Schutte, Paul C. and Kathy H. Abbott, "An Artificial Intelligence Approach to
Onboard Fault Monitoring and Diagnosis for Aircraft Applications," AIAA
Guidance and Control Conference, Williamsburg, VA, 1986.

Schwartz, Daniel G. and George J. Klir, "Fuzzy Logic Flowers in Japan,” IEEE
Spectrum, Volume 29, No. 7, July 1992.

Schwartz, Tom J., "IEEE Gets Fuzzy," IEEE Expert, Volume 7, No. 3, June 1992.

Segre, Alberto Maria, "Applications of Machine Learning," IEEE Expert, Volume 7,
No. 3, June 1992,

Seidman, Abraham N., "Neural Networks and Digital Avionics," IEEE/ATAA/NASA
Digital Avionics Systems Conference Proceedings, IEEE Service Center,
Piscataway, NJ, 1990.

Selcon, Stephen J., "Decision Support in the Cockpit: Probably a Good Thing?"
Proceedings of the Human Factors Society 34th Annual Meeting, Santa
Monica, CA, 1990.

Semple, W. G., "Development of Tactical Decision Aids," AGARD Conference
Proceedings 499: Machine Intelligence for Aerospace Electronic Systems,
Advisory Group for Aerospace Research and Development, Neuilly Sur Seine,
France, September 1991.

Sewell, Daniel R. and William B. Johnson, "The Effects of Rapid Prototyping on
User Behavior on System Design," Journal of the Washington Academy of
Sciences, Volume 80, No. 2, June 1991.

Shaw!, Julie, "Neural Network Resource Guide," AI Expert, Volume 8, No. 2,

February 1993.

Shaw?, Julie, "AI Language Resource Guide," AI Expert, Volume 8, No. 4, April
1993.

Shear, David; "Neural Network and Fuzzy Logic Combine to Create COP8 Code," EDN,
Volume 38, No. 11, May 27, 1993.

Shelnutt, Jack B., et al., "Pilot's Associate Demonstration One: A Look
Inside," Proceedings of the IEEE 1986 National Aerospace and Electronics
Conference, IEEE Service Center, Piscataway, NJ, 1986.

Sheppard, John W. and William R. Simpson, "Expert Systems for Diagnostic
" Testing," Avionics, October 1992.

Shepherd, William T. and William B. Johnson, "Aircraft Maintenance Challenges
and Human Factors Solutions," Seminar on Flight Safety and Human Factors,
International Civil Aviation Organization, November 1991.

Shewhart, Mark, "Interpreting Statistical Process Control (SPC) Charts Using
Machine Learning and Expert System Techniques," Proceedings of the IEEE

20-118

1992 National Aerospace and Electronics Conference, IEEE Service Center,
Piscataway, NJ, 1992.

Silbert, Mark, et al., "A Tool for Development of AI Hybrid Systems," IEEE/ATAA

Digital Avionics Systems Conference Proceedings, IEEE Service Center,
Piscataway, NJ, 1986.

Simpson, Patrick K., "Neural Network Paradigms," AGARD lLecture Series 179:

Artificial Neural Network Approaches in Guidance and Contrel, Advisory
Group for Aerospace Research and Development, Neuilly Sur Seine, France,

September 1991.

Sitz, Joel R. and Todd H. Vernon, "Flight Control System Design Factors for
Applying Automated Testing Techniques," NASA Technical Memorandum 4242,
October 1990.

Small, Ronald A. and Charles W. Howard, "A Real-Time Approach to Information
Management in a Pilot's Associate," IEEE/ATIAA 10th Digital Avionics
Systems Conference Proceedings, IEEE Service Center, Piscataway, NJ, 1991.

Smith, Carolyn and Horace Sklar, "Embedded Expert Systems for Fault Detection

and Isolation," IEEE/ATAA Digital Avionics Systems Conference Proceedings,

IEEE Service Center, Piscataway, NJ, 1986.

Sorrells, Mark E., "A Time~Constrained Inference Strategy for Real Time Expert
Systems," Proceedings of the IEEE 1985 National Aerospace and Electronics
Conference, IEEE Service Center, Piscataway, NJ, 1985.

Steele, Jr., Guy L., Common LISP: The Language, Digital Press, 1984,

Tazelaar, Jane Morrill, "Neural Networks," Byte, August 1989.

Texas Instruments Literature, "Fuzzy Logic Moves 1into DSP Design Arena,"
Integration, North American Edition, Volume 11, No. 1, Texas Instruments,
1994,

Togai, Masaki and Horoyuki Watanabe, "Expert System on a Chip: An Engine for
Approximate Reasoning," Fuzzy Expert Systems, Abraham Kandel ed., CRC
Press, Boca Raton, FL, 1992.

Touretzky, David S. and Dean A. Pomerleau, "What's Hidden in the Hidden
Layers?," Byte, August 1989.

Valstar, Jacob E., "Expert System Development on a Spreadsheet,” Proceedings of
the IEEE 1986 National Aerospace and Electronics Conference, IEEE Service
Center, Piscataway, NJ, 1986.

Waibel, Alex and John Hampshire, "Building Blocks for Speech," Byte, August
1989.

20-119

Waldron, Vince, Harold W. Sharp, and Lt. Scott A. Stefanov, "Distributed Expert
Management System," Proceedings of the IEEE 1987 National Aerospace and
Electronics Conference, IEEE Service Center, Piscataway, NJ, 1987.

Wagner, Elaine A., "Onboard Automatic Aid and Advisory for Pilots of Control-
Impaired Aircraft,” Journal of Guidance, Control. and Dynamics, Volume 14,
No. 4, July-August 1991.

Wang, David C. and James Thompson, "An Adaptive Data Sorter Based on
Probabilistic Neural Networks," Topics in Engineering, Volume 3, AIL
Systems, Inc., Deer Park, NY, 1992.

Warn, Keith, "Expert System Shell Standardization - The Controversy,”
Proceedings of the IEEE 1987 National Aerospace and Electronics
Conference, IEEE Service Center, Piscataway, NJ, 1987.

Waterman, Donald A., A Guide to Expert Systems, Addison-Wesley Publishing
Company, Reading, MA, 1986.

Weiss, Ray, "Fuzzy Coprocessor Performs up to 870,000 Evaluations per Second,"
EDN, Volume 38, No. 22, October 28, 1993.

Weiss, Sholom M. and Casimir A. Kulikowski, A Practical Guide to Expert Systems,
Rowman and Allanheld Publishers, Totowa, NJ, 1984,

Wellens, Rodney A. and Michael D. McNeese, "A Research Agenda for the Social
Psychology of Intelligent Machines," Proceedings of the IEEE 1987 National
Aerospace and Electronics Conference, IEEE Service Center, Piscataway, NJ,
1987.

Wenger, E., Artificial Intelligence and Tutoring Systems: Computational and
Cognitive Approaches to the Communication of Knowledge, Morgan Kauffmann,
Los Altos, CA, 1987.

Whitaker, Leslie A., Richard H. Stottler, and James A. King, "Case—Based
Reasoning: Taming the Similarity Heuristic,"” Proceedings of the Human
Factors Society 34th Annual Meeting, Santa Monica, CA, 1990.

White, David J. and Elizabeth A. Bart, "An Expert System for VLSI Datapath
Synthesis," Proceedings of the IEEE 1988 National Aerospace and
Flectronics Conference, IEEE Service Center, Piscataway, NJ, 1988.

Wickens, Christopher D., "Decision Making," Kim M. Cardosi and M. Stephen
Huntley eds., Human Factors for Flight Deck Certification Personnel,
Draft, DOT-VNTSC-FAA-93-4, U.S. Department of Transportation, Research and
Special Programs Administration, May 1993.

Wickens, Christopher D., Engineering Psvchology and Human Performance, 2nd ed.,
Harper Collins Publishing Company, 1992.

20-120

Widman, Lawrence E., Kenneth A. Loparo, and Norman R. Nielsen, Artificial
Intelligence, Simulation, and Modeling, John Wiley and Sons Publishing
Company, New York, NY, 1989.

Wiederholt, Bradley J., "MITT Writer: An Authoring System for Developing
Intelligent Tutors for Complex Technical Domains,"” Galaxy Scientific
Corporation, 1991.

Wiener, Earl L.vand David C. Nigel, Human Factors in Aviation, Academic Press,
Inc., San Diego, CA, 1988.

Wilber, George F. and E. Jean Dryer, "Strategic Real-Time Airborne Electronic
Warfare Using Knowledge Base Techniques," Proceedings of the IEEE 1988
National Aerospace and Electronics Conference, IEEE Service Center,
Piscataway, NJ, 1988.

Williams, Dr. R. M. and J. J. Davidson, "AI for RPVs, Sensor Driven Airborne
Replanner, for a Robotic Aircraft Sensor Platform," AGARD Conference
Proceedings 499: Machine Intelligence for Aerospace Electronic Systems,
Advisory Group for Aerospace Research and Development, Neuilly Sur Seine,
France, September 1991.

Williams, Tom, "Fuzzy Logic is Anything but Fuzzy," Computer Design, April 1992.

Winston, Patrick Henry, Artificial Intelligence 2nd Edition, Addison-Wesley
Publishing Company, Reading, MA, 1984,

Wood, James, et al., "A Rule—Based Logic Design Assistant," Proceedings of the
IEEE 1986 National Aerospace and Electronics Conference, IEEE Service
Center, Piscataway, NJ, 1986.

Woolf, Beverly and Tom Murray, "A Framework for Representing Tutorial
Discourse," Proceedings of the 10th International Joint Conference on

Artificial Intelligence, Milan, Italy, August 23-28, 1987.

"Workshop on Verification, Validation, and Testing of Intelligent Systems," 9th
IEEE Conference on Artificial Intelligence for Applications, Orlando, FL,
March 2, 1993,

Xiaofeng, Li, "What's So Bad About Rule-Based Programming?," IEEE Software,
September 1991,

Yen, Mike, "Lisp-to-Ada Reengineering Issues and Support Environments for
Fielding Real-Time Systems," IEEE/AIAA 11th Digital Avionics Systems
Conference Proceedings, IEEE Service Center, Piscataway, NJ, 1992.

Yops, Jr., Thomas E. and John R. Moore, "An Integrated Vehicle Management System
Concept for Military Transports," Proceedings of the IEEE 1986 National
Aerospace and Electronics Conference, IEEE Service Center, Piscataway, NJ,
1986.

20~121

a Pitot—Static Test Set," National

Young, Christina M., "Fuzzy Controller for
Aerospace and Electronics Conference, I1EEE Service Center, Piscataway, NJ,
1993.

Ziemacki, Mike, "Fuzzy Logic Microcontroller," ECN, Volume 37, No. 3, March

1993.

20-122

GLOSSARY

A PRIORI. Pertaining to deductive reasoning from assumed axioms or supposedly
self-evident principles, without reference to experience.

ADAPTIVE FUZZY SYSTEMS. Fuzzy controllers with the ability to learn and explain
their reasoning. \

ALGORITHM. A set of well-defined rules for the solution of a problem in a finite
number of steps.

ANALOG. Pertaining to devices, data, circuits, or systems that operate with
variables that are presented by continuously measured voltages or other
quantities.

ARC. The part of a semantic network that connects one object to another.

ARTIFICIAL INTELLIGENCE. The subfield of computer science concerned with
emulating human intelligence by use of software and hardware techniques.

ASSISTANT. An Expert System that performs a technically limited subset of an
expert’s task.

ASSOCIATIVE MEMORY NETWORK. A network where different input patterns, if
sufficiently similar, become associated with one another (trigger the same
response).

ASYNCHRONOUS. Operating at a speed determined by the circuit functions rather
than by timing signals.

ATTRACTOR. The geometrical pattern toward which the trajectory of a dynamical
system, represented by a curve in phase space, converges in the course of time.

AXON. The pathway that carries the output of a biological neuron.

BACK PROPAGATION. An algorithm used to adjust weights connecting neurons in
successive layers of multi-layer networks. Back propagation learns by example
and repetition.

BACKWARD CHAINING. A method of problem solving that works backward from a known
conclusion in an attempt to find a path of reasoning in order to justify the
conclusion.

BASIN OF ATTRACTION. The collection of all possible initial conditions of a
dynamical system for which the trajectories representing that system in phase
space will converge to a particular attractor.

20-123

BINARY. Composed of or characterized by two parts or elements.

BLACK BOX. A component having known input and output, that can be readily
inserted into or removed from a specific place in a larger system without
knowledge of the component’'s detailed internal structure.

BLACKBOARD. The controlling agent in a blackboard system that tracks activity
between the knowledge sources.

BLACKBOARD SYSTEM. An Expert System that uses multiple knowledge sources that
share data.

BOOLEAN LOGIC. The basic mathematics needed to study the logic design of digital
systems. Boolean logic consists of two values and three basic operators.

BREADTH FIRST. The method of searching for solutions by considering all possible
subgoals on one level before proceeding to the next level.

CERTAINTY FACTOR. A value that represents the level of belief associated with
a fact or a rule.

CERTIFICATION. The process of obtaining FAA approval for the design,
manufacture, and/or sale of aircraft and associated systems, subsystems, and
parts.

CLOSED-LOOP. A family of automatic control units linked together with a process
to form an endless chain; the effects of control action are constantly measured
so that if the controlled quantity departs from the norm, the control units act
to bring it back. ‘

CLUSTERING. A technique to group similar objects together under the same label.

CODIFYING. A method of representing knowledge or data so they can be stored in
a knowledge base or database for access by a computer.

COLLEAGUE. An Expert System that performs a significant subset of an expert’'s
task.

CONNECTION WEIGHT. A method of representing the strength of the connection
between nodes.

CONVENTIONAL PROGRAMMING. The use of standard programming languages, as opposed
to application development languages, financial planning languages, query
languages, and report programs.

CONVERGENCE. The point when the outputs of a Neural Network are no longer
changing.

CRISP SET. The membership concept used in traditional system modelling, where
objects are either in or out of the set with no intermediate step.

20-124

DATA DRIVEN. Describing the execution of a program in a data flow system, in
which an instruction is carried out whenever all its input values are present.

DECLARATIVE. Generally, the knowledge found in the knowledge base; independent

knowledge that does not contain procedures or methods of handling other
knowledge.

DEDUCTIVE. Learning by logical inference or inferring from available knowledge.

DEFUZZIFICATION. The process of translating fuzzy, or non—crisp values into
crisp, clearly defined values.

DEMON. A procedure activated by changing or accessing values in a database.
DENDRITE. The pathway that carries the input of a biological neuron.

DEPTH FIRST. A method of searching for a solution by pursuing each branch of the
search tree to the end before considering another branch.

DOT PRODUCT. The inner product of vectors (X;, ...,Xp) and (y;, ...,¥,) from n—
dimensional euclidean space is the sum of s;y;, as i ranges from 1 to n.

EMPIRICAL MODEL. The model of a system based on data and the principles of
statistics. Empirical models produce relationships, not insight.

EVENT. A change to the blackboard of a Blackboard System.
EXPERT. 1. An Expert System that approaches an expert'’s level of performance

within a given domain. 2. A person who has mastered solving specific types of
problems.

EXPERT SYSTEM. A computer system designed to simulate the problem solving
behavior of a human expert. '

EXPERT SYSTEM SHELL. An Expert System development tool and run-time environment
with a modifiable knowledge base.

FACETTE. A piece of knowledge in a frame.

FEED FORWARD NEURAL NETWORK. A Neural Network where the only connections are
from a neuron in one layer to a neuron in the next layer.

FILTER. A transmission network used in electrical systems for the selective
enhancement of a given class of input signals.

FORWARD CHAINING. A method of solving problems by beginning with certain data
and moving down the inference chain until a solution is reached.

FRAME. A way of representing Expert System knowledge that consists of a set of
slots that contain data.

FRAME LABEL. A unique frame identification.

20-125

FUZZIFICATION. The process of converting crisp inputs into fuzzy values.

FUZZY CONTROL VARIABLE. A parameter whose value determines the action taken by
fuzzy rules.

FUZZY EXPERT SYSTEM. An Expert System that uses fuzzy logic techniques to solve
problems.

FUZZY 10GIC. The theory of representing vague or imprecise concepts to model
inherent conditions.

FUZZY SET. An extension of the concept of a set, in which the characteristic
function which determines membership of an object in the set can take on any
value between 0 and 1.

FUZZY TERMS. Words used for descriptions that may not be precise in determining
set memberships.

GRACEFUL DEGRADATION; A programming technique to prevent catastrophic system
failure by allowing the machine to operate, though in a degraded mode, despite
failure or malfunction of .several integral units or subsystems.

HETEROASSOCIATIVE. A Neural Network where output patterns are distinct from
input patterns.

HEURISTIC. Any rule of thumb, strategy, or technique used to limit the time
required to search for solutions in large problem spaces.

HEURISTIC REASONING. Using an expert’s rules of thumb, in the absence of precise
control mechanisms, to reduce the space that must be searched for a solution.

HIDDEN LAYER. The middle layer in a Neural Network which takes outputs from the
input layer, processes them, and passes them to the output layer.

INDUCTIVE. Learning by information repetition.

INFERENCE CHAIN. The path of reasoning that the inference engine follows to find
a solution to the problem.

INFERENCE ENGINE. The part of an Artificial Intelligence system that uses
knowledge in the knowledge base and acquired knowledge about the problem to form
an expert solution.

INFERENCE MECHANISM. Controls the use of the knowledge base and databases when
solving a problem.

INPUT LAYER. The first layer of neurons in a Neural Network. The input layer
accepts the input values and passes them to the hidden layer. The input layer
does not process data.

KNOWLEDGE ACQUISITION. The process of gathering the required information from
various sources by a knowledge engineer.

20-126

KNOWLEDGE BASE. A form of coded knowledge about a specific domain.

KNOWLEDGE—BASED SYSTEM. A computer system whose usefulness derives primarily
from a database containing human knowledge in a computerized format.

KNOWLEDGE ENGINEER. The person responsible for extracting, organizing, and
encoding the knowledge related to the problem, and importing it into a knowledge
base or database.

LABEL. A data item that serves to identify a data record, or a symbolic name
used in a program to mark the location of a particular instruction or routine.

LAYER. A row of neurons in a Neural Network; there are usually three layers in
a network.

LOGICAL SUM. The final unified result of the rule processes of a fuzzy system.

MACHINE LEARNING. The process or technique by which a device modifies its own
behavior as the result of its past experience and performance.

META-KNOWLEDGE. Knowledge that reveals details about the system knowledge.
MODEL. A mathematical or physical system, obeying certain specified conditions,
whose behavior is used to understand a physical, biological, or social system to

which it is analogous in some way.

NEURAL NETWORK. A system modelled after the brain, used to solve problems by a
mapping of input data to output data.

NEURO-FUZZY. Integrating a Neural Network and fuzzy logic to solve problems.

NEURON. The computational element in a Neural Network. A neuron computes the
weighted sum of the inputs from other neurons and produces an output.

NODE. 1. Representation of an object that is re&lated to other objects via
connection weights. 2. The part of a Neural Network that calculates and
processes information,

NOISE. Meaningless or erroneous bits that must be ignored or removed from a
signal, especially in communication channels.

NON REAL-TIME LEARNING. Learning done in a Neural Network before attempting to
solve application problems.

NONLINEARITY. A system in which the outputs do not correspond to the inputs in
a direct or inversely proportional relationship.

OBJECT—ORIENTED. A representation form for knowledge in which all properties of
an object are associated by the outgoing and incoming arcs at its node; the
representation is geared towards manipulating objects as independent pieces of
knowledge. :

20-127

OPPORTUNISTIC REASONING. The process of solving problems in a way that is not.
uniform or predictable. Opportunistic reasoning attempts to solve the problem
in the best possible way for each individual situation. Rules fire when they are
appropriate, without a priori ordering.

OUTPUT IAYER. The layer of neurons in a Neural Network that takes the outputs
from the hidden layer, processes them, and then produces the output of the
network.

PARALLEL PROCESSING. Performing many different calculations simultaneously to
reach one conclusion or solution. '

PREDICATE CALCULUS. A formal language of classical logic that uses functions and
predicates to describe relations between individual entities.

PROBABILITY. A theory dealing with the uncertainty that results from random
behavior. Probability is defined over the numeric range of 0 to 1.

PROCESSING ELEMENT. The part of the Neural Network where the computations are
performed.

PRODUCTION RULES. A common technique for representing procedural knowledge in
an Artificial Intelligence system.

REAL-TIME TEARNING. Learning done in a Neural Network while solving an
application problem.

RECURSION. A technique in which an apparently circular process is used to
perform an iterative process.

RULE-BASED. An Artificial Intelligence program where knowledge is represented
as rules.

RULES. A method of representing knowledge in the form of IF THEN statements.

SCHEDULER. A part of an inference engine that determines which knowledge source
should be activated, and in what order.

SEARCH TREE. The branches of possible solutions to a problem that start with
initial information and spread out following different paths.

SELF-SUPERVISED. A method of training a Neural Network without the use of an
external monitor. A feedback device that detects errors and adjusts the
connection weights accordingly is used.

SEMANTIC NETWORK. A method of representing knowledge using nodes and arcs.

SLOTS. Subdivisions making up the frame that may contain data, procedures, or
pointers to other frames.

SPURIOUS STATE. A point in a Neural Network that acts as an attractor, but is
not one of the stored patterns.

20-128

STABILITY. The property of a system which remains under control and responds in

a reasonable manner to an applied input.

SUPERVISED LEARNING. A method of training a Neural Network in which an external

supervisor monitors the activities, and learning occurs on the basis of direct
comparison of the output of the network with known correct answers.

SYMBOLIC PROCESSING. A method of processing knowledge where the relationships
among the knowledge are stored using symbolic representations; thus, the system
can deal freely with objects and not be concerned with their composition.

SYNAPSES. Pathways in a biological neuron that transmit pulses from one neuron

to another.

SYNCHRONOUS. In step, or in phase, as applied to two or more circuits, devices,

or machines.

TRADITIONAL PROGRAMMING. The use of standard programming languages, as opposed
to application development languages, financial planning languages, query
languages, and report programs.

TRAINING. A change in connection weight values of a Neural Network that results

in capturing information that can be recalled later.

TRANSFER FUNCTION. The mathematical relationship between the output of a control
system and its input: for a linear system, it is the Laplace transform of the
output divided by the Laplace transform of the input under conditions of zero
initial-energy storage.

TRANSPARENGY. A characteristic of knowledge in an Expert System referring to its
independence from other knowledge. There is no processing information in the
transparent knowledge.

UNSUPERVISED LEARNING. A method of training a Neural Network, where no external
monitor is involved; the Neural Network organizes itself by grouping and
generating its own classification of inputs.

VERY LARGE SCALE INTEGRATION. Describing Integrated Circuits with more than 1000
elements.

WEIGHT MATRIX. The collection of connection weights for an entire Neural
Network.

20-129/130

uC
pm
AC
ACO
AGARD
Al
ATAA
AIM
ANSI
ARINC
ARP
ARPA
ASIC
ATC
ATE
BABBAGE
BIT
CASSY
Chu
CE

CF

CM
CMOS
CNI
CPU
DOD
DOS
DOT
DSP
EEPROM
EPES
ES
ETANN
F/FA
FAA
FAR
FCA
FIDE
FIL
FINDER

FLEX
GaAs
GUI

ACRONYMS AND ABBREVIATIONS

micro Controller

micrometer

Advisory Circular

Aircraft Certification Office

Advisory Group for Aerospace Research and Development
Artificial Intelligence

American Institute of Aeronautics and Astronautics
Airmen’s Information Manual

American National Standards Institute

Aeronautical Radio, Incorporated

Aerospace Recommended Practice

‘Advanced Research Projects Agency (formerly DARPA)

Application Specific Integrated Circuit

Air Traffic Control

Automatic Test Equipment

Boeing Advanced BlackBoard Ada Generation Environment
Built—-In Test

Cockpit Assistant System

Control Display Unit

Certification Engineer

Certainty Factor

Configuration Management

Complimentary Metal-Oxide Semiconductor
Communication, Navigation, and Identification
Central Processing Unit

Department of Defense

Disk Operating System

Department of Transportation

Digital Signal Processor

Electrically Erasable Programmable Read Only Memory
Emergency Procedures Expert System

Expert System

Electrically Trainable Analog Neural Network
Fault and Failure Analysis ‘

Federal Aviation Administration

Federal Aviation Regulation

Fuzzy Computational Accelerator

Fuzzy Inference Development Environment

Fuzzy Inference Language

Flight-Plan Interactive Negotiation and Decision-Aiding System
for Enroute Rerouting ’
FORTRAN Library for EXpert systems

gallium arsenide

Graphical User Interface

20-131

HOL
IC
1EEE
IETM
IJCNN
1/0
IV&V

KBAP
LED
LISP
MEP
MHz

NASA

ONR
PA

PC

PE

PGA
PMA
PROLOG

RISC
RPA
RTCA

SAE

SC
STC
TC
TEAMS
TSO
TTL
USAF

V&V
VLSI

High-Order Language

Integrated Circuit

Institute of Electrical and Electronics Engineers
Interactive Electronic Technical Manual
International Joint Conference on Neural Networks
Input/Output

Independent Verification and Validation

thousand

Knowledge—-Based AutoPilot

Light Emitting Diode

LISt Processor

Mission Equipment Package

MegaHertz

millimeter

National Aeronautics and Space Administration
Neural Network

Office of Naval Research

Pilot's Associate

personal computer

Processing Element

pin grid array

Portable Maintenance Aid

PROgramming in LOGic

Royal Aerospace Establishment

Reduced Instruction Set Computer

Rotorcraft Pilot's Associate

Requirements and Technical Concepts for Aviation (formerly
Radio Technical Commission for Aeronautics)
Engineering Society for Advancing Mobility Land Sea Air and
Space (formerly Society of Automotive Engineers)
Special Committee

Supplemental Type Certificate

Type Certificate

Technical Expert Aircraft Maintenance System
Technical Standing Order

Transistor-Transistor Logic

United States Air Force

Unit Under Test

Verification and Validation

Very Large Scale Integration

20-132

INDEX

Advanced Research Projects Agency 20-49,
20-63

Advisory Circular 20-71

Air Traffic Control 20-2, 20-60, 20-61

Aircraft Certification Office 20-70,
20-71

Airmen’'s Information Manual 20-61, 20-79

Application Specific Integrated Circuit

20-51, 20-52

Applications 20-1, 20-19, 20-25, 20-35,
20-41, 20-57

Arc 20-15

ARINC 20-70

Artificial Intelligence
definition 20-1 \
development systems and tools
20-52
history 20-5
integrated systems 20-41
software 20-45

Associative network 20-15

Automatic Test Equipment 20-65

Axon 20-38

Back propagation 20-37

Backward Chaining 20-18

Black box testing 20-78, 20-85, 20-88,
20-89

Blackboard System 20-23
control 20-25
knowledge source 20-25

Boeing Advanced BlackBoard Ada Generation
Environment 20-48

Built-In Test 20-65

Certainty Factor 20-15

Certification 20-69
guidelines 20-70

Certification specialist 20-79, 20-93,

20-98, 20-99
Chaining 20-17
CLIPS 20-48
Cockpit Assistant System 20-2, 20-59
Communication, Navigation, and

Identification 20-66
Completeness 20-76

20-133

Complimentary Metal—-Oxide Semiconductor
20-49, 20-50, 20-52
Configuration Management -20-90
Consistency 20-76
Control Display Unit 20-60
correctness 20-75, 20-80
functional 20-75
resource consumption 20-76
safety 20-76
user—interface 20-76
utility 20-76
Crisp Logic 20-28
Database 20-4, 20-7
Decision support system 20-59
Dendrite 20-38
Department of Defense 20-2, 20-94
Diagnostic System 20-65
Digital Signal Processor 20-54
Diverter 20-60
DOD-STD-2167A 20-~73
Electrically Trainable Analog Neural
Network 20-49
Emergency Procedures Expert System
20-58, 20-59
Expert System 20-7
architecture 20-7
classes 20-8
definition 20-6
» fuzzy 20-43
implementation 20-8
shell 20-81
testability issues 20-92
Tools 20-46
verification and validation 20-78
verification and validation
techniques 20-85
Explanation of Reasoning 20-9
Facette 20-17
Fault and Failure Analysis 20-70
Federal Aviation Administration 20-49,
20-69, 20-70, 20-71, 20-94
Federal Aviation Regulations 20-61,
20-70, 20-79
Flight Management Expert System 20-58

Flight-Plan Interactive Negotiation and
Decision-Aiding System 20-61

formal verification 20-88

FORTRAN Library for EXpert
20-48, 20-59

Forward Chaining 20-18

Frames 20-15

fuzzy control

defuzzification 20-31

fuzzification 20-29

inference mechanism 20-29

Inference Development Environment

20-54

Inference Language

Fuzzy Logic 20-26

Fuzzy set 20-31, 20-34, 20-43

Heuristic Reasoning 20-20

Hidden layer 20-40

High-Order Language 20-83, 20-84, 20-90

human factors 20-93, 20-100
automation 20-96

Independent Verification and Validation
20-74, 20-78

Inference chain 20-14, 20-18

Inference Engine 20-7

Interactive Electronic Technical Manual

systems

Fuzzy

Fuzzy 20-54

20-65

Intuition 20-1, 20-5, 20-35, 20-84,
20-97

Knowledge Acquisition 20-18

Knowledge Base 20-7
updating 20-17

Knowledge Representation 20-9

Knowledge—Based AutoPilot 20-59

LISP 20-6, 20-45, 20-46, 20-48, 20-58,
20-80

Machine Intelligence 20-2

Machine learning 20-17, 20-54

Meta-knowledge 20-11, 20-18 \

National Aeronautics and Space
Administration 20-2, 20-48, 20-59,
20-60, 20-94

Natural language 20-4, 20-9, 20-26,
20~-46

Navigation System 20-59

Neural Accelerator 20-51

Neural Network 20-36, 20-37, 20-38,

20-40, 20-41, 20-42, 20-49, 20-66,

20-97

connections 20-39
construction 20-38
convergence 20-38

20-134

definition 20-36
layers 20-40
learning 20-37
transfer functions
Neural Processor 20-49
Office of Naval Research 20-66
Opportunistic reasoning 20-25

20-38

Pilot’'s Associate 20-63, 20-79, 20-80,
20-100

Processing Element 20-38, 20-39

Production rule 20-24, 20-54

PROLOG 20-6, 20-45, 20-46

Reduced Instruction Set Computer 20-57,
20-58

reliability 20-91

Robotics 20-3 .

Rotorcraft Pilot’s -Associate 20-63,
20-65

Rotorcraft transmission health monitoring
system 20-65

Royal Aerospace Establishment 20-48,
20-59

RTCA 20-70
Special Committee 20-71

RTCA/DO-178B 20-72

Rule 20-6, 20-7

Rule Architecture 20-14

Rule—Based System 20-10
SAE 20-70
Scheduler 20-23,
Search tree 20-20
Searching 20-20

20-24, 20-25

breadth first 20-20, 20-21
depth first 20-21
Semantic Networks 20-15

Slot 20-15

software development cycle

Special Committee 20-71

Supervised Learning 20-37

Supplemental Type Certificate

supportability 20-90

Synapse 20-38

Technical Expert Aircraft Maintenance
System 20-66, 20-67/68

20-79

20-69

Technical Standing Order 20-69
Termination 20-77
test bias elimination 20-87
testing

coverage 20-88

data consistency 20-87

implementation 20-85

knowledge acquisition 20-88 ‘

knowledge consistency 20-88
knowledge representation 20-88
rule consistency 20-86
sensitivity analysis 20-87
specification—directed analysis
20-87
structural 20-87
Transistor-Transistor Logic 20-49, 20-50

"Type Certificate 20-69

United States Air Force 20-63
Unsupervised Learning 20-38
validation
definition 20-74
verification
automating 20-89
definition 20-73
documentation 20-74
Verification and Validation 20-77
conventional 20-73
dynamic testing 20-77
Expert System 20-78
general testing methods 20-78
inference engine 20-82 '
static testing 20-77
techniques for Expert Systems
20-85
VLSI 20-52
Weight matrix 20-39

20-135

DIGITAL SYSTEMS VALIDATION HANDBOOK — VOLUME II

TABLE OF CONTENTS

Chapter

LIST OF AUTHORS

1.

SUMMARY

R. L. McDowall

INTRODUCTION

R. L. McDowall

INTEGRATED ASSURANCE ASSESSMENT

Hardy P. Curd

QUADRUPLEX DIGITAL FLIGHT CONTROL SYSTEMS
Lloyd N. Popish

ADVANCED FAULT INSERTION AND SIMULATION METHODS
William W. Cooley

DIGITAL DATA BUSES FOR AVIATION APPLICATIONS
Donald Eldredge and Susan Mangold
ANALYTICAL SENSOR REDUNDANCY

William W. Cooley and Deborah L. Shortess

ESTIMATION AND MODELING FOR REAL-TIME SOFIWARE
RELIABILITY MODELS

Donald Eldredge and Susan Mangold
FAULT TOLERANT SOFTWARE

Myron J. Hecht

iii

Page
vii

1-1

3-1

5-1

6~-1

8-1

9-1

TABLE OF CONTENTS

(Continued)
Chapter Page
10. LATENT FAULTS 10-1
John G. McGough
11. AIRCRAFT ELECTROMAGNETIC COMPATIBILITY 11-1

(Guidelines to Assess EMC Designs)
Clifton A. Clarke and William E. Larsen

12. FAST RISE~TIME ELECTRICAL TRANSIENTS IN AIRCRAFT 12-1
Roger McConnell

13. LIGHTNING STUDIES 13-1

William W. Cooley, Barbara G. Melander, and
Deborah L. Shortess

14, HIGH ENERGY RADIO FREQUENCY FIELDS 14-1
(Impact on Digital Systems)

John E. Reed and Robert E. Evans

15. ELECTROMECHANICAL ACTUATOR SYSTEMS 15-1
(Electrical Systems Certification Issues)

William W. Cooley

16. ADVANCED VALIDATION ISSUES l6-1
Hardy P. Curd

17. SOFTWARE QUALITY METRICS ' 17-1
Donald A. Elwell and Nancy J. VanSuetendael

18. AVIONIC DATA BUS INTEGRATION TECHNOLOGY 18-1

Donald A. Elwell, Lee H. Harrison, John H. Hensyl,
and Nancy J. VanSuetendael

19. PILOT-VEHICLE INTERFACE 19-1

Lee H. Harrison, Joan L. Janowitz, and
Maurice A. Castronuovo

iv

TABLE OF CONTENTS
(Continued)
Chapter Page
20. ARTIFICIAL INTELLIGENCE WITH APPLICATIONS FOR AIRCRAFT 20-1
Lee H. Harrison, Pamela J. Saunders, and Joan L. Janowitz
GLOSSARY

ACRONYMS

v/vi

LIST OF AUTHORS

Maurice A. Castronuovo

Galaxy Scientific Corp.

2500 English Creek Ave., Bldg. 11
Pleasantville, NJ 08232

Clifton A. Clarke

Boeing Commercial Airplane Company
P. 0. Box 3707

Seattle, WA 98124

William W. Cooley
Science & Engineering Associates, Inc.
701 Dexter Avenue
Seattle, WA 98109

Hardy P. Curd

Computer Resource Management, Inc.
950 Herndon Parkway, Suite 360
Herndon, VA 22070

Donald Eldredge

Battelle Columbus Division
505 King Avenue

Columbus, OH 43201

Donald A. Elwell

CTA, Inc.

2500 English Creek Ave., Suite 1000
Pleasantville, NJ 08232

Robert E. Evans
FAA Technical Center
Atlantic City International Airport, NJ 08405

Lee H. Harrison

Galaxy Scientific Corp.

2500 English Creek Ave., Bldg. 11
Pleasantville, NJ 08232

Myron J. Hecht

SoHaR, Inc.

8500 Wilshire Boulevard
Beverly Hills, CA 90211

vii

LIST OF AUTHORS
(Continued)

John H. Hensyl

Diversified International Sciences Corp.
9901-R Business Parkway

Lanham, MD 20706-1840

Joan L. Janowitz

Galaxy Scientific Corp.

2500 English Creek Ave., Bldg. 11
Pleasantville, NJ 08232

William E. Larsen

FAA Field Office

P. 0. Box 25

Moffett Field, CA 94035

Susan Mangold

Battelle Columbus Division
505 King Avenue

Columbus, OH 43201

Roger McConnell

CK Consultants

5473 A Clouds Rest
Mariposa, CA 95338

R. L. McDowall

Galaxy Scientific Corp.

2500 English Creek Ave., Bldg. 11
Pleasantville, NJ 08232

John G. McGough, Consultant
150 Walnut Street
Ridgewood, NJ 07450

Barbara G. Melander

Science & Engineering Associates, Inc.
701 Dexter Avenue

Seattle, WA 98109

Lloyd N. Popish, Consultant
525 Davenport Court
Sunnyvale, CA 94087

John E. Reed
AERS/Midwest, Inc.

PO Box 965

106 Washington
Burlington, IA 52601

viii

LIST OF AUTHORS
(Continued)

Pamela J. Saunders

Galaxy Scientific Corp.

2500 English Creek Ave., Bldg. 11
Pleasantville, NJ 08232

Deborah L. Shortess

Science & Engineering Associates, Inc.
701 Dexter Avenue

Seattle, WA 98109

Nancy J. VanSuetendael

Computer Resource Management, Inc.
950 Herndon Parkway, Suite 360
Herndon, VA 22070

ix

GLOSSARY

a=FAULT. {10) A fault activated by the baseline program (see R—FAULT).

A_PRIORI. ({20) Pertaining to deductive reasoning from assumed axioms or
supposedly self-evident principles, without reference to experience.

A-SPECIFICATION. (9) The highest level specification typically produced by the
contracting organization to define a system (see MIL-STD-1521).

ABSORPTION LOSS. {11} Attenuation or retention of electromagnetic energy passing
through a material, a shield. Absorption loss and reflection loss contribute to
total shielding effectiveness (SE). :

ACCESS. (18) The process of a transmitting bus user obtaining control of a data
bus in order to transmit a message.

ACTION INTEGRAL. {13} The action integral is a critical factor in the production
of damage. It relates to the energy deposited or absorbed in a system. This
energy cannot be defined without knowing the resistance of the system. The
instantaneous power dissipated in a resistor is I’R and is expressed in watts.
For the total energy expended, the power must be integrated over time to get the
total joules, watt—seconds. By specifying the integral of i(t)% over the time
interval involved, a useful quantity is defined for application to any resistance
value. In the case of lightning, this quantity is defined as the action integral
and is specified as i(t)2%dt over the time the current flows.

ACTIVE FAULT. {10) A fault that can produce an error (for some input) while
executing the current program.

ACTUAL TRANSIENT LEVEL. {13} The actual transient level is the level of
transients which actually appear at the system interfaces as a result of the
external environment. This level may be less than or equal to the transient
control level but should not be greater.

ADAPTIVE FUZZY SYSTEMS. (20) Fuzzy controllers with the ability to learn and
explain their reasoning.

ADDRESSING CAPACITY. (6) The number of components addressable by the protocol
used on a given data bus.

ADVISORY CIRCULAR. {18) An external FAA publication consisting of nonregulatory
material of a policy, guidance, and informational nature.

.AIR TRANSPORT AIRCRAFT. (18} Aircraft used in interstate, overseas, or foreign
air transportation.

AIRCRAFT LIGHTNING INTERACTION. {13) An encounter with lightning that produces
sufficient current within or voltages along an aircraft skin or structure to pose
a threat to the aircraft electrical/electronic systems, as a result of a direct
lightning attachment.

AIRWORTHINESS STANDARDS. (18} Parts 23, 25, 27, 29, and 33 of the Code of
Federal Regulations, Title 14, Chapter 1, Subchapter C.

ALGORITHM. (20) A set of well-defined rules for the solution of a problem in a
finite number of steps.

AMBIENT. {(16) The substance which absorbs heat from the heat sink.

ANALOG. {20) Pertaining to devices, data, circuits, or systems that operate with
variables that are presented by continuously measured voltages or other
quantities.

ANALYTICAL REDUNDANCY. {7) The use of software algorithms which use known mathe-
matical relationships between different sensors for sensor failure detection and
replace most of additional redundant sensor hardware.

ANALYTICAL ROOT SOLUTION. (4) Information obtained from the roots of the
characteristic equations of the airplane model such as short—period or phugoid
frequency response.

ANGLE OF ATTACK. {4} Angle between the longitudinal axis of an aircraft and the
direction of movement.

ANTSOTROPIC. {19) Having different, direction dependent, physical
characteristics.

ANODIZE. {11} A preparation by electrolytic process that deposits a protective

oxide, insulating film on a metallic surface (aluminum). The oxide defeats
electrical bonding. Alodine and iridite finishes on aluminum are conductive.

ANTAGONISTIC QUALITY FACTORS. {17) Quality Factors with conflicting attributes.

APERTURE. {11) An opening, such as a nonconductive panel joint, slot, or crack,
allowing electromagnetic energy to pass through a shield.

ARC. (20) The part of a semantic network that connects one object to another.

ARCHITECTURE. (18) The design and interaction of components of a computer
system.

ARTIFICIAL INTELLIGENCE. {16} The characteristics of a machine programmed to

imitate human intelligence functions.

ARTIFICIAL INTELLIGENCE. {20; The subfield of computer science concerned with
emulating human intelligence by use of software and hardware techniques.

ASSISTANT. (20) An Expert System that performs a technically limited subset of
an expert'’s task.

ASSOCIATIVE MEMORY NETWORK. (20) A network where different input patterns, if
sufficiently similar, become associated with one another (trigger the same
response) . ‘

ASSURANCE ASSESSMENT. {4) Procedures whose purpose is to ensure that a proposed
system functions according to design specifications.

ASYNCHRONOUS. ({20} Operating at a speed determined by the circuit functions
rather than by timing signals.

ASYNCHRONOUS MESSAGES. (6) Electronic signals with transmission times that are
not known a priori. These may include priority signals requiring immediate
access to the bus.

ATTACHMENT POINT. (13) A point of contact of the lightning flash with the
aircraft.

ATTENSON. (19) A unique sound used on the flight deck for alerting the
flightcrew of warning, caution, and advisory conditions.

ATTRACTOR. {20) The geometrical pattern toward which the trajectory of a
dynamical system, represented by a curve in phase space, converges in the course
of time. :

AUDIO FREQUENCY (AF). {11} The spectrum (20 to 20,000 Hz) of human hearing,
often defined as extending from approximately 20 Hz to 50 kHz and sometimes to
150 kHz. Audio noise is nuisance hum, static, or tones from power line 400 Hz,

switching regulator and digital clock harmonics, or HF, VHF transmitter
frequencies.

AUTOFEATHER. {(16) To automatically and swiftly feather the propeller when the
engine fails to drive it.

AUXILIARY PROGRAMS. (10} Software executed occasionally.

AVATIANCHING LATENT FAULTS. (10} The successive activation of latent faults.
AVIONIC. {(18) Electronic equipment used in aircraft.

AXON. {20} The pathway that carries the output of a biological neuron.
R—FAULT. {10} A fault not activated by the baseline program (see a-FAULT) .
BABBLING TRANSMITTER. (18) A bus user that transmits outside its allocated time.

BACK PROPAGATION. {20} An algorithm used to adjust weights connecting neurons
in successive layers of multi-layer networks. Back propagation learns by example
and repetition.

BACKSHELL. {11) Metal shell connecting circuit shields or overbraid to an
electrical connector.

BACKWARD CHAINING. (20} A method of problem solving that works backward from a
known conclusion in an attempt to find a path of reasoning in order to justify
the conclusion.

BACKWARD RECOVERY. {9) Restoration of the system to some previous known correct
state and restarting the computation from that point.

BALANCED CIRCUIT. (11) A signal, acting line-to-line, between two conductors
having symmetrical voltages identical and equal in relation to other circuits and -
to ground. "Differential mode" is line-to-line; "common mode" is line to ground.

BALANCED CONFIGURATION. {18) A bus using the HDLC protocol that connects only
primary stations. '

BANDWIDTH (BW). (11} Frequencies bounded by an upper and lower limit in a given
band associated with electronic devices, filters, and receivers.

BASELINE PROGRAM. {10} A set of continuously executed software modules.

BASIN OF ATTRACTION. {20} The collection of all possible initial conditions of
a dynamical system for which the trajectories representing that system in phase
space will converge to a particular attractor.

BENIGN FAULT. (10) A fault that cannot produce an error while executing the
current program, regardless of input, but may produce an error for some other
program.

BIDIRECTIONAL DATA BUS. {18) A data bus with more than one user capable of
transmitting.

BINARY. (20) Composed of or characterized by two parts or elements.

BINARY SEARCH. (17) A searching algorithm in which the search population is
repeatedly divided into two equal or nearly equal sections.

BIREFRINGENCE. (19) The splitting of light into two components, where each
component travels at a different velocity.

BIT—ORIENTED PROTOCOL. (18) A communication protocol where message frames can
vary in length, with single bit resolution.

BIT TIME. (6) The time it would take to transmit one bit. Usually this is
"blank" time when nothing is being transmitted. One nth of the bus speed (i.e.,

on a 1 kHz bus, the bit time is 1073 seconds).

BITS. (17) Binary digits.

BLACK BOX. (20) A component having known input and output, that can be readily
inserted into or removed from a specific place in a larger system without
knowledge of the component’s detailed internal structure.

BLACKBOARD. (20) The controlling agent in a blackboard system that tracks
activity between the knowledge sources.

BLACKBOARD\SYSTEM. {20) An Expert System that uses multiple knowledge sources
that share data.

BLOCK TRANSFER. {6} A data transfef mode allowing the transfer of variable
length data blocks.

BOND, ELECTRICAL. {11) Electrical connection at two metallic surfaces securely
joined to assure good conductivity often 2.5-m{l maximum for electrical/electronic
units and 1Q for electrostatic dissipation or safety. A "faying surface" bond
maintains contact between relatively large or long surfaces. Inherently bonded
parts are permanently assembled and conductivity exists without special
preparation: such as with welding, brazing.

BOOLEAN LOGIC. (20} The basic mathematics needed to study the logic design of
digital systems. Boolean logic consists of two values and three basic operators.

BRAID, OVERBRAID. {11) Fine metallic conductors woven to form a flexible conduit
or cableway and installed around insulated wires to provide protection against
electric fields and radio frequencies. Best when peripherally connected to
backshells. A grounding strap/jumper may be made of braid.

BREADTH FIRST. {20) The method of searching for solutions by considering all
possible subgoals on one level before proceeding to the next level.

BRIDGE. (18) A BIU that is connected to more than one bus for the purpose of
transferring bus messages from one bus to another, where all the buses follow the
same protocol,

BROADBAND. (12} A frequency spectrum which is wide compared to the bandwidth of
the device used to detect it.

BROADCAST. {4) Transmission of messages to all terminals without reference to
the identification of the receiving station or terminal.

BROADCAST CAPABILITY. (6) The capacity to transmit messages to all terminals
simultaneously.

BROADCAST DATA BUS. (18} A data bus where all messages are transmitted to all
bus users.

BUFFER. (18) Memory used to hold segments of the data transferred between
asynchronous processes.

BUS. {18) A conductor that serves as a common connection of a signal to multiple
users.

BUS CONTROLLER. (18) The electronic unit that is designed to control the bus
communication of all users for a centrally controlled bus.

BUS INTERFACE UNIT. {18) The electronics that interface the host CPU of an LRU
"to a bus medium.

BUS MESSAGE. {18) A complete set of bits that can be transferred between two bus
users.

BUS NETWORK. (18) The collection of all BIUs and bus media associated with one
bus.

BUS OVERLOAD. {18) The condition that exists when the time it takes to transmit
outstanding messages on a bus exceeds the time allotted for those transmissions.

BUS USER. {18) Any LRU attached to a bus.

BYZANTINE RESILIENCE. {5} A fault tolerant process which 1is tolerant of
intermittent faults that can send good information part of the time.

CABLE OR HARNESS. {11} A bundle of separate, insulated, electrical circuits,
shielded or unshielded, usually long and flexible and having breakouts,
terminations, overbraid, and mounting provisions completely assembled.

CABLEWAY. (11) A solid metallic housing (liner, foil, coating) surrounding and
shielding insulated electrical conductors. Also called conduit, tray, or
raceway. Crosswise or transverse openings or breaks in the metallic cableway
cause noise voltages to be transferred to internal wire circuits.

CANARD. (16) A tail-first aerodyne, usually with auxiliary horizontal surface
at the front and a vertical surface at the back.

CAT IIIa LANDING. (6) One of several landing categories defined in FAR 91. CAT
II1a implies the need for an instrument landing approach.

CENTRAL BUS CONTROL. (18} The bus control approach where a single electronic
unit attached to a bus controls all the communication of the bus users.

CENTRAL CONTROL. (6} Control from one master, whether stationary or non-—
stationary.

CERTAINTY FACTOR. (20} A value that represents the level of belief associated
with a fact or a rule.

CERTIFICATION. (18,20} The process of obtaining FAA approval for the design,
manufacture, and/or sale of aircraft and associated systems, subsystems, and
parts.

CHARACTER—ORIENTED PROTOCOL. {18) A communication protocol where messages can
vary in length, with single character resolution.

CHARGE TRANSFER. (13} The integral of the current over its entire duration,
i(t)dt, in coulombs.

CHECKSUM. (18) An error detection code produced by performing a binary addition,
without carry, of all the words in a message.

CHOLESTERIC. {19) A liquid crystal phase with molecules parallel to each other
but twisting slightly from layer to layer.

CHORD. {4) The straight line segment intersecting or touching an airfoil profile
at two points.

CLOSED-LOOP. {18) A system where the output is a function of the input and the
system's previous output.

CLOSED-LOOP. (20} A family of automatic control units linked together with a
process to form an endless chain: the effects of control action are constantly
measured so that if the controlled quantity departs from the norm, the control
units act to bring it back.

CLUSTERING. {20} A technique to group similar objects together under the same
label.

CODE. {17) The subset of software which exists for the sole purpose of being
loaded into a computer to control it.

CODIFYING. {20) A method of representing knowledge or data so they can be stored
in a knowledge base or database for access by a computer.

COLLEAGUE. (20} An Expert System that performs a significant subset of an
expert’s task.

COMBINER. {19) A screen designed to reflect selected wavelengths of light while
remaining transmissive for others.

COMMAND /RESPONSE. {6} "Operation of a data bus system such that remote terminals
receive and transmit data only when commanded to do so by the controller." (MIL—-
STD-1553 Designexr's Guide, 1983, p. II-3.)

COMMAND/RESPONSE DATA BUS. {18) A data bus whose protocol initiates each data
transfer with a command and terminates the transfer after a proper response is
received. ‘

COMMON MODE IMPEDANCE. (11) Impedance or resistance shared by two or more
circuits so that noise voltages/currents generated by one are impressed on the
others.

COMMON MODE REJECTION. {11) The ability of wiring or an electronic device to
reject common mode (line—to—ground) signals and maintain fidelity of differential
mode (line-to-line) signals.

COMMON MODE SIGNAL. {(11) Identical and equal signals on input conductors or at
the terminals of a device relative to ground.

COMPLEMENTARY QUALITY FAGCTORS. ({17} Quality Factors with interrelated
attributes.

COMPONENT DAMAGE. {13) Condition arising when the electrical characteristics of
a circuit component are permanently altered beyond its specifications.

CONDUCTED EMISSTION (CE) OR INTERFERENCE. {11} Voltage/current noise signals

entering or leaving a unit on interface conductors. Emission is the general
term, interference is undesired noise.

CONFIGURATION MANAGEMENT. {18} The precise control and documentation of the
configuration of an entity at any time during its development and deployment.

CONNECTION WEIGHT. {20} A method of representing the strength of the connection
between nodes.

CONTENT ADDRESSING. (6} The system of identifying message recipients based on
information embedded in the message. This is in contrast to destination terminal
addresses.

CONTENTION PROTOCOL. {18} A protocol that allows users to randomly access the
bus at any time. When bus contention results, each user tries again to access
the bus without contention.

CONTROL IAW. (7) The physical relationship between various sensors and control
surfaces. '

CONTROL,_REGISTER. (18} A register in an IC controller that receives commands
from a host processor.

CONTROL _STRUCTURES. {17} Programming constructs which direct the flow of
control.

CONVENTIONAL PROGRAMMING. (20) The use of standard programming languages, as
opposed to application development languages, financial planning languages, query
languages, and report programs.

CONVERGENCE. {20} The point when the outputs of a Neural Network are no longer
changing.

CORONA. (13} A luminous discharge that occurs as a result of an electrical
potential difference between the aircraft and the surrounding atmosphere.

COUPLING. (11) The transfer of energy between wires or components of a circuit
electrostatically, electromagnetically, or directly.

COVERAGE. {5) The conditional probability of the system successfully recovering
from a component fault and continuing to perform the intended functions

correctly, given the presence of the fault. Coverage 1s . the measure of

8

-

effectiveness of a system’s utilization of redundant hardware. Coverage can be
qualified and applied to many different components of a system and phases of
recovery process. Examples include, fault detection coverage, fault isolation

coverage, latent fault coverage, sensor failure coverage, and memory failure
coverage.

COVERAGE. (7) The percent confidence level of a given analytical redundancy
fault detection and isolation algorithm for all types of faults.

COVERAGE. (9) The probability that when a fault occurs, it will be detected and
recovery from the fault will be successful.

CRISP SET. {20) The membership concept used in traditional system modelling,
where objects are either in or out of the set with no intermediate step.

CRITICAL. {13} Functions whose failure would contribute to or cause a failure

condition which would prevent the continued safe flight and landing of the
aircraft.

CROSS COUPLING (CROSSTAIK). (11) Transfer of signals from one channel, circuit,

or conductor to another as an undesired or nuisance signal or the resulting
noise.

DAMAGE. {11} The irreversible failure of a component.

DATA BUS. (6,18,19) A system for transferring data between discrete pieces of
equipment in the same complex.

DATA BUS PROTOCOL. {18) The set of rules that governs the transfer of data
between data bus users.

DATA DRIVEN. (20} Describing the execution of a program in a data flow system,
in which an instruction is carried out whenever all its input values are present.

DATA LATENCY. {6,18) The delay from the time when a piece of information becomes
available at a source terminal to the time it is received at the destination.

DATA LINK ASSURANCE OF RECEIPT. {6} The guarantee of good data through the data
link level.

DATA REASONABLENESS CHECK. (18} A check performed to see if a value of data is
within reasonable bounds for the given context.

dBuV. {12) Decibels referred to one microvolt. Zero db represents one micro-
volt.

DECIBEL (dB). (11,12) Decibel expresses the ratio between two amounts of power,
Pl and P2, at two separate points in a circuit. By definition, the number of dB
= 10 log to the base 10 of (P1/P2). For special cases, when a standard power

level P2 = 1 mW or 1 W or 1 kW, then the ratio is defined as "dBm," "dBw," or
"dBKW." Because P = V2/R and also IR, decibels express voltage and current
ratios. Ideally, the voltages and currents are measured at two points having

9

identical impedances. By definition, dB = 20 log V1/V2 and dB = log I1/I2. For
convenience, V2 or I2 are often chosen as 1 uV or 1 pA and the ratio is defined
as dB above a uV or dB above a pA when graphing emission or susceptibility
limits.

DECLARATIVE. (20) Generally, the knowledge found in the knowledge base;
independent knowledge that does not contain procedures or methods of handling
other knowledge.

DECOUPLED MANEUVERS. (4) Changes in an aircraft’s direction and attitude in one
axis without affecting direction or attitude in other axes.

" DEDUCTIVE. (20} Learning by logical inference or inferring from available
knowledge.

DEFAULT DATA. (18) An alternative value used for a parameter whenever the normal
data is not supplied.

DEFUZZIFICATION. {20} The process of translating fuzzy, or non-crisp values into
crisp, clearly defined values. ’

DEMON. (20} A procedure activated by changing or accessing values in a database.
DENDRITE. {20) The pathway that carries the input of a biological neuron.

DEPTH FIRST. {20} A method of searching for a solution by pursuing each branch
of the search tree to the end before considering another branch.

DESIGN ERROR. (4) A functional flaw resulting from a misinterpretation of the
specifications of the system.

DESIGN MARGIN. {13) The difference between the equipment transient design levels
and the transient control level.

DETERMINISTIC. (6) A system where all parameters are known, as opposed to a
statistical system where the outcome is subject to the laws of probability.

DETERMINISTIC PROTOCOL. {18) A protocol where all parameters are known so that
its various states are predictable in sequence and time.

DIAGNOSTIC FILTER. (7) An analytical algorithm which processes data from N
functionally related sensors. The data are used to estimate some sensor outputs
and assess the correct functioning of the sensors.

DICHROIC. (19) Having different light absorption characteristics based on
incident polarization direction.

DIELECTRIC. (19) Having an insulating property with respect to an electrical
field.

DIELECTRIC STRENGTH. {11} Voltage withstand capability that an insulating
material sustains before destructive arcing and current flow, usually expressed

10

in volts per mil thickness. Dielectric withstand voltage is the voltage level
at which insulation breakdown occurs.

DIFFERENTIAL MODE (DM) SIGNAL. (11} The signal in a two—wire circuit measured
from line-to-line.

DIGITAL DATA BUS. (18} A data bus that uses digital electronic signals.

DIRECT EFFECTS. {13) Any physical damage to the aircraft or onboard systems due
to the direct attachment of the lightning channel. This includes tearing,
bending, burning, vaporization, or blasting of aircraft surfaces or structures,
and damage to electrical/electronic systems.

DISSIMILAR REDUNDANCY. {18) The redundancy of systems that provide a redundancy
of function, but by a different form.

DISSIMILAR SOFTWARE. {18} Redundant computer programs that provide a redundancy
of function, but by a different form.

DISTRIBUTED BUS CONTROL. (18} The bus control approach where the total
communication control job is distributed across the bus users, each controlling
the communications during its period of responsibility.

DISTRIBUTED CONTROL. (6) Concurrent control from multiple points in the data bus
system.

DOT PRODUCT. {20) The inner product of vectors (X, ...,%,) and (y1s «+..,Yn) from
n-dimensional euclidean space is the sum of s;y;, as i ranges from 1 to n.

DOUBLE FAIL-OPERATIONAL SYSTEM. {4) A quadruplex (or higher) redundant flight-
control system which is designed to incur failures in two redundant lanes (or
channels) before it fails.

DUAL-DUAL ARCHITECTURE. (4) Two parallel dual computers with a voting plane at
the output of each dual computing lane.

DUAL FAIL-OPERATIONAL. (7) A reliability requirement placed on a system which
requires the system to be operational after two failures have occurred.

DUAL GROUND. {11} Equipment case ground/return through two independent circuit
paths to structure implemented in flammable zones and water leakage areas—each
path meeting electrical conductivity (resistance) requirements.

ELECTRIC FIEID. ({11) High-impedance, radiated voltage field, positive or
negative, from a voltage source as contrasted to a low-impedance magnetic field
from a current source.

ELECTROMAGNETIC GOMPATIBILITY (EMC). (11) Operation within performance
specification in the intended electromagnetic interference environment.

11

ELECTROMAGNETIC INTERFERENCE (EMI). (11) Conducted and radiated voltage/current
noise signals, broadband (BB) or narrow band (NB), that degrade the specified
performance of equipment.

ELECTROMIGRATION. (5) Drifting of metal atoms toward the cathode of a cathode
ray tube.

ELECTROSTATIC CHARGE. (11) Electric potential energy with a surrounding electric
field, uniform or nonuniform, moving or at rest, on a material.

EMISSION. (11} Voltage/current noise on a wire or in space. Broadband emission
has uniform spectral energy over a wide frequency range and can be identified by
the response of a measuring receiver not varying when tuned over several receiver
"bandwidths." Or, energy present over a bandwidth greater than the resolution
bandwidth where individual spectral components cannot be resolved. Broadband
(BB) may be of two ‘types: (1) impulse and coherent varies 20 dB per decade of
bandwidth and (2) random or statistical, varies 10 dB per decade. A narrow band
(NB) emission or signal, sometimes called continuous wave, occurs at a discrete
frequency and does not vary with bandwidth.

EMPIRICAL MODEL. (20} The model of a system based on data and the principles of
statistics. Empirical models produce relationships, not insight.

EMULATION. {18) The duplication of the behavior of a system with a different
system. :

ENVELOPE LIMITING. {(4) General or additional limits imposed on the structural,
"g" limits, speed, attitude, etc. of the aircraft. In some cases, envelope
limiting imposes additional constraints on the envelope that cannot be exceeded
regardless of pilot inputs.

EQUIPMENT TRANSTIENT DESIGN LEVEL. (13} The level of transients which the
equipment is qualified to withstand.

EQUIPMENT TRANSTENT SUSCEPTIBILITY LEVEL. (13) The transient level which will
result in damage or upset to the system components. This level will be greater
than the equipment transient design level.

EQUIVALENCE STATEMENT. (17} A FORTRAN statement which equates two variable
names.

ERROR. (4} A mistake in specification, design, production, maintenance, or
operation of a system causing undesirable performance.

ERROR. {8) A state of the system which (in the absence of any corrective action
by the system) could lead to a failure that would not be attributed to any event
subsequent to the error. (More accurately known as an erroneous state.)

ERROR _MASKING. {18) The process of masking the presence of avionic errors,

possibly by using an electronic voter to override an erroneous input with the
values of substitute inputs.

12

EVENT. (20) A change to the blackboard of a Blackboard System.

EVENT, EXTREMELY IMPROBABLE. {4} An event with a probability of occurrence on
the order of 107° or less.

EVENT, IMPROBABLE. (4) An event with a probability of occurrence on the order
of 107 or less.

EVENT, PROBABLE. (4) An event with a probability of occurrence on the order of
107 or greater.

EXPERT. ({20} 1. An Expert System that approaches an expert’'s level of
performance within a given domain. 2. A person who has mastered solving specific
types of problems.

EXPERT SYSTEM. (20) A computer system designed to simulate the problem solving
behavior of a human expert.

EXPERT SYSTEM SHELL. (20} An Expert System development tool and run—time
environment with a modifiable knowledge base.

EXTERNAL ENVIRONMENT. (13} Characterization of the natural lightning environment
with idealized waveforms for engineering purposes.

FACETTE. (20) A piece of knowledge in a frame.

FAIL-OPERATIONAL. (7) A reliability requirement placed on a system which
requires the system to be operational after a single failure has occurred.

FAIL-SAFE. {7) A reliability requirement placed on a system which requires that
safe flight not be hindered even after a failure.

FAIL-SAFE. {18) A design philosophy that ensures that any failure in a system
does not result in an unsafe condition after the failure.

FAILURE. (4) The inability of a system, subsystem, unit, or part to perform
within specified limits.

FAILURE. (5) The deviation of system behavior from specifications (arithmetic
failure, storage failure, flight control function failure.)

FAILURE. (8) The situation when the external behavior of a system does not
conform to that prescribed by the system specification.

FAILURE, HARD. {5) Repeated use of the same input and initial conditions results
in the same incorrect response.

FAILURE, HIDDEN. (4) A failure that is not manifested at the time of its
occurrence.

13

FAILURE MECHANISM. (5) Any situation that could produce an error condition.
Examples of failure mechanisms include metal migration, voltage overstress, and
lack of air-conditioning.

FAILURE, PERMANENT. (5} Repeated use of the same input and initial conditions
results in the same incorrect response.

FAILURE, SOFT. (5) Repeated use of the same input and initial conditions does
not result in the same incorrect response.

FAILURE, TEMPORARY. {5) Repeated use of the same input and initial conditions
does not result in the same incorrect response.

FAILURE, TRANSIENT. {(5) Repeated use of the same input and initial conditions
does not result in the same incorrect response.

FALL-TIME. {12) The time required for pulse amplitude to go from a predefined
magnitude to a given level.

FALSE ALARM. (7) The declaration of a fault by a fault detection monitor or
algorithm when there is no fault. :

FAULT. {4) An error in the operation of a system.

FAULT. {5) The phenomenological reason for a failure (open wire, stuck—at fault,
design fault, etc.). In general, any condition preventing a digital component
from correctly changing state when directed to change by input parameters. For
electrical components there is a one—to—one correspondence between faults and
failures. The situation is not so simple with digital circuits. For if the
circuit is S-A-1, any input causing a one output will be correctly processed; a
little like the stopped clock that is correct twice per day. For a processor
having a million or so logic gates, it is not possible to test for all the
combinations of input and output states.

FAULT. (8) The adjusted cause of error.

FAULT AVOIDANCE. (9) The attempt to prevent any software faults in the final
delivered product through disciplined software development practices, testing,
and IV&V.

FAULT CONTAINMENT. (6,9) The capacity of a system to prohibit errors and/or
failures from propagating from the source throughout the system.

FAULT CURRENT. {11) The maximum current (magnitude and duration) flowing through
a fault point. This current is equal to the supply voltage divided by the dc
resistance of power line leads, circuit breakers, and the current return in wire
or structure.

FAULT DETECTION. (6) The capacity of a system to determine the occurrence of
erroneous operation.

14

FAULT DETECTION. (7} The determination that a sensor is faulted by using a
software algorithm.

FAULT, HARD. {4) A defect in the hardware or software of a digital control
system that permanently affects some functional performance of the system.

FAULT INSERTION. {4) A testing technique used to obtain information about data
latency and built—in test coverage of a digital flight—-control system.

FAULT ISOLATION. (6) The capacity of a system to isolate a failure to the
required level so it can reconfigure.

FAULT ISOLATION. {7} The determination that a particular sensor is faulted by
using a software algorithm.

FAULT. LATENT. {5) A fault which has not yet caused a failure. (For example,
a fault in a memory chip that is not being used for the foreground program or in
this particular mode of the system is a latent fault.)

FAULT, SOFT. {4) A transient defect in the software of a digital flight—control
system that can be overcome by error—correctable code or by recycling of power
to the computer system.

FAULT, STUCK-AT. (5) A logic signal which remains at zero (S—-A-0) or one
(S-A-1).

FAULT TOLERANCE. {6,9) The capability to endure errors and/or failures without
causing total system failure.

FAULT TOLERANCE. {7) Accommodation of sensor hardware faults based on some type
of comparator scheme.

FAULT TOLERANCE. (18) The ability of a system to continue operation after a
fault, possibly in a degraded condition.

FAULT TOLERANT. {4,9) Software which continues to operate satisfactorily in the
presence of faults.

FAULT TOLERANT SYSTEM. {5) A system that continues to function although certain
components may have faults.

FAULT TREE ANALYSIS. (&) A top—down deductive analysis that identifies' the
conditions and functional failures necessary to cause a defined failure
condition. The fault tree can be used to establish the probability of the
ultimate failure condition occurring as a function of the estimated probabilities
of contributory events.

FEDERAL AVIATION REGULATIONS. (18,19) Subchapter C of the Code of Federal
Regulations, Title 14, Chapter 1.

FEED FORWARD NEURAL NETWORK. (20} A Neural Network where the only connections
are from a neuron in one layer to a neuron in the next layer.

15

FILTER. (11) Device or unit that passes or rejects a frequency band and is
designed to block noise from entering or leaving a circuit or unit.

FILTER. {20} A transmission network used in electrical systems for the selective
enhancement of a given class of input signals.

FINITE STATE MACHINE. (18} A state machine with a finite number of states.
FLIGHT CODE. (4) The application software of the digital flight-control system.

FLIGHT-CRITICAL. {4,7,18) A description of functions whose failure would
contribute to or cause a failure condition preventing the continued safe flight
and landing of the aircraft.

FLIGHT-ESSENTIAL. (4,18} A description of functions whose failure would
contribute to or cause a failure condition -which would significantly affect the
safety of the airplane or the ability of its crew to cope with adverse operating
conditions.

FLIGHT-NONESSENTIAL FUNCTION. (18} ‘A function whose failure could not
significantly degrade aircraft capability or crew ability.

FLIGHT-PHASE CRITICAL. (4) A description of functions which are critical only
during certain phases of flight.

FLY-BY-GLASS. {16) Flight control system where fiber optics carry the signal.

FLY-BY-LIGHT. (4,16) Flight control system where fiber optics carry the signal.
FLY-BY-WIRE. (4,16) Flight control system with electric signaling.

FORWARD CHAINING. (20) A method of solving problems by beginning with certain
data and moving down the inference chain until a solution is reached.

FORWARD RECOVERY. (9) Restoration of the system to a consistent state by
compensating for inconsistencies found in the current state so that the system
may continue processing.

FOURIER TRANSFORM. ({12} A mathematical method for deriving the frequency
spectrum from a time dependent function.

FRAME. (18) A formatted block of data words or bits that is used to construct
messages.

FRAME. (20) A way of representing Expert System knowledge that consists of a set
of slots that contain data. '

FRAME TABEL. {20} A unique frame identification.
FUNCTIONAL PARTITIONING. (18) The partitioning of system functions by placing

each group of users, which share a common function, on different data buses.

16

FUZZIFICATION. (20) The process of converting crisp inputs into fuzzy values.

FUZZY CONTROL VARIABLE. {20} A parameter whose value determines the action taken
by fuzzy rules.

FUZZY EXPERT SYSTEM. (20} An Expert System that uses fuzzy logic techniques to
solve problems.

FUZZY 10GIC. (20) The theory of representing vague or imprecise concepts to
model inherent conditions.

FUZZY SET. {20) An extension of the concept of a set, in which the
characteristic function which determines membership of an object in the set can
take on any value between O and 1.

FUZZY TERMS. (20} Words used for descriptions that may not be precise in
determining set memberships.

GATEWAY. (18) A bus user that is connected to more than one bus for the purpose
of transferring bus messages from one bus to another, where the buses do not
follow the same protocol.

GENERAL AVIATION AIRCRAFT. (18} The non—air transport civil aircraft.
GETTER. {19} A metal alloy used in a vacuum tube to absorb residual gasses.

GENERATOR POLYNOMIAL. {18) The polynomial code that is used to generate the
remainder in the division of the CRC check.

GIGABIT. {(16) One billion bits.

GLASS COCKPIT. (9} Advanced state-of-the—art electronic displays utilizing flat
panel and/or cathode ray tube display technology for cockpit instrumentation.

GLOBAL STATE. (18) A state that represents the condition of the entire network
being modeled, including senders, receivers, and the communication link.

GRACEFUL DEGRADATION. (20) A programming technique to prevent catastrophic
system failure by allowing the machine to operate, though in a degraded mode,
despite failure or malfunction of several integral units or subsystems.

GRAY SCALE. (19) A series of tones, varying from black to white.

GROUND. (11) A generic term having multiple meanings and indicating a circuit
return path or a voltage reference: not "zero" voltage reference. Four hundred
millivolts of noise voltage is common on "quiet" grounds. There are several

types of returns and references.

GROUND EFFECT. {4) Increase in aircraft lift when operating near the ground.

HALF-DUPLEX. (18) Bidirectional communication between two entities on a single
channel by each having a turn to control the channel.

17

HAMMING CODE. {18) An error detection and correction code based on the Hamming
distance.

HAMMING DISTANCE. (18) The number of bit positions in which two binary words
differ.

HANDSHAKING. (18) The reciprocal responses given by two electronic systems to
sequence the steps of a transfer of data between them.

HARD FAILURE. (12} A failure that requires a reset of the equipment.
HARDWARE. (17} The physical components of a computer.

HARDWARE—IN-THE-LOOP SIMULATION. {18) A partial simulation of a system; part of
the actual system is used in the simulation.

HAZARD FUNCTION. (8) The conditional probability that a fault is exposed in the
interval t to At given that the fault did not occur prior to time t.

HERMETIC. (19) Having an airtight seal.

HETEROASSOCTATIVE. {20} A Neural Network where output patterns are distinct from
input patterns.

HEURISTIC. (20) Any rule of thumb, strategy, or technique used to limit the time
required to search for solutions in large problem spaces.

HEURISTIC REASONING. {20} Using an expert’s rules of thumb, in the absence of
precise control mechanisms, to reduce the space that must be searched for a
solution.

HIDDEN LAYER. {20) The middle layer in a Neural Network which takes outputs from
the input layer, processes them, and passes them to the output layer.

IMMUNITY. (11} Capability of a circuit or unit to operate within performance
specification in a specified electromagnetic interference environment.

INDIRECT EFFECTS. {13) Voltage and/or current transients induced by lightning
in aircraft electrical wiring which can produce upset and/or damage to components
within electrical/electronic systems.

INDUCED VOLTAGES. (13} A voltage produced around a closed path or circuit by
changing magnetic or electric fields or structural IR voltages.

INDUCTIVE. {20) Learning by information repetition.

INFERENCE CHAIN. (20) The path of reasoning that the inference engine follows
to find a solution to the problem.

INFERENCE ENGINE. (20} The part of an Artificial Intelligence system that uses
knowledge in the knowledge base and acquired knowledge about the problem to form
an expert solution.

18

INFERENCE MECHANISM. {20) Controls the use of the knowledge base and databases
when solving a problem.

INITIALIZATION. {6} Setting the beginning parameters and values on system power-—
up. For redundant systems this includes setting the initial configuration of the
system.

INPUT LAYER. {20) The first layer of neurons in a Neural Network. The input
layer accepts the input values and passes them to the hidden layer. The input
layer does not process data.

INTERNAL ENVIRONMENT. (13} The fields and structural IR potentials produced by
the external environment, along with the voltages and currents induced by them.

INTERRUPT VECTOR. (18) The address that points to the beginning of the service
routine for an interrupt.

INTERRUPT VECTOR TABLE. (18} The table of interrupt vectors for all interrupts
serviced by a system.

ISOLATION. {11) Electrical separation and insulation of circuits from ground and
other circuits or arrangement of parts to provide protection and prevention of
uncontrolled electrical contact.

ISOTROPIC. {19) Having the same physical properties in all directions.
JOULE. (12} A unit of energy equal to one watt—second.

JUMPER/STRAP. {11) A short wire, strip, strap, or braid conductor installed to
make a safety ground connection, to dissipate electrostatic charge, or establish
continuity around a break in a circuit.

KILOBYTE. (16) One thousand bytes.

KNOWLEDGE ACQUISITION. (20) The process of gathering the required information
from various sources by a knowledge engineer.

KNOWLEDGE BASE. {20) A form of coded knowledge about a specific domain.

KNOWLEDGE-BASED _SYSTEM. {20) A computer system whose usefulness derives
primarily from a database containing human knowledge in a computerized format.

KNOWLEDGE ENGINEER. (20) The person responsible for extracting, organizing, and
encoding the knowledge related to the problem, and importing it into a knowledge
base or database.

LABEL. (20} A data item that serves to identify a data record, or a symbolic

name used in a program to mark the location of a particular instruction or
routine.

LABELED ADDRESSING. (6) The system of identifying message recipients based on
labels. This is in contrast to destination terminal addresses.

19

LATENT FAULT. (10} A fault which has not yet produced a malfunction. (In the
context of the single—fault model, benign and latent faults are equivalent.)

LAYER. (20) A row of neurons in a Neural Network; there are usually three layers
in a network.

LIGHTNING FLASH. (13) The total lightning event in which charge is transferred
from one charge center to another. It may occur within a cloud, between clouds,
or between a cloud and the ground. It can consist of one or more strokes, plus
intermediate or continuing currents.

LIGHTNING LEADER STROKE. (13) The leader forms an ionized path for charge to be
channeled towards the opposite charge center. The stepped leader travels in a
series of short, luminous steps prior to the first return stroke. The dart
leader reionizes the return stroke path in one luminous step prior to each
subsequent return stroke in the lightning strike. \

LIGHTNING RETURN STROKE. (13) A lightning current surge that occurs when the
lightning leader makes contact with the ground or an opposite charge center.

LIGHTNING STRIKE. (13) Any attachment of the lightning flash to the aircraft.

LIGHTNING STRIKE ZONES. {13} Locations on the aircraft where the lightning flash
will attach or where substantial amounts of electrical currert may be conducted
between attachment points. The location of these zones on any aircraft is
dependent on the aircraft’s geometry and operational factors and often varies
from one aircraft to another.

LIMITING, VOLTAGE/CURRENT. (11} Semiconductor components, diodes, Transorb, or
filter designed to clip and shunt to ground an applied transient or steadystate
voltage. Used to protect against noise frequencies, faults, lightning, and
inductive switching transients.

LINE REPLACEABLE UNIT. {(18,19) An electronics unit that is made to be replaced
on the flight line, as opposed to one that requires the aircraft be taken to the
shop for repair.

LINEAR BUS. (18} A bus where users are connected to the medium; one on each end,
with the rest connected in between.

LOGICAL SUM. (20) The final unified result of the rule processes of a fuzzy
system.

LOW-PASS FILTER. (12} An electrical circuit which allows the pissage of low
frequencies and prevents the passage of high frequencies.

MACHINE LEARNING. (20} The process or technique by which a device modifies its
own behavior as the result of its past experience and performance.

MAGNETIC FIELD. {11) A radiated, low—impedance field having lines of "flux" or
magnetomotive force associated with an electrical current.

20

MALFUNCTION. {11) Failure or degradation in performance that compromises flight
safety.

MANCHESTER II MODULATION. (18} A non-return to zero, bipolar modulation of a
voltage that encodes bits based on the zero-crossing direction of the signal.

MEAN AERODYNAMIC CHORD (also mean chord). (4) The chord of an airfoil whose
length is equal to the area of the airfoil section divided by the span.

MEAN FAILURE RATE. {10} A measure of survivability defined as the reciprocal of
the mean time to system failure.

MESSAGE STRUCTURE. {6) The organization of both protocol and data information
in a message.

META-KNOWLEDGE. {20) Knowledge that reveals details about the system knowledge.

METRIC. (17} A measure.
MICRON. {16} One-millionth of a meter.

MISSED AIARM. ({7) The failure of a fault detection monitor or algorithm to
detect a fault when there is a sensor fault.

MODEL. (20) A mathematical or physical system, obeying certain specified
conditions, whose behavior is used to understand a physical, biological, or
social system to which it is analogous in some way.

MODELING. (18) Creating a system of mathematical equations that formulate all
the significant behavior of a system.

MODULE. {17} A unit of code which implements a function.

MONITORABILITY. (6) The capacity of the protocol to be viewed passively to allow

observation of the dynamics of the protocol.

MONOLITHIC. {19) A single substrate used for an integrated circuit.

MONOTONIGC FUNCTION. (17) A function in which a certain change in the measure
always represents a certain change in the property being measured, where either
change is simply an increase or decrease in magnitude.

MULTIPLE BURST. (13) A randomly spaced series of bursts of short duration, low
amplitude current pulses, with each pulse characterized by rapidly changing
currents. These bursts may result from lightning leader progression or branching
and may be accompanied by or superimposed on stroke or continuing currents. The
multiple bursts appear to be most intense at the time of initial leader
attachment to the aircraft.

MULTIPLE STRIKE. (13) Two or more lightning strikes during a single flight.

21

MULTIPLE STROKE. {13} Two or more return strokes occurring during a single
lightning flash.

MULTIPLE TRIP MONITOR. {7) A fault detection algorithm which declares a fault
after the sensor output has exceeded a predefined threshold N times.

MULTIVERSION PROGRAMMING. {(18) N-version programming.
N-VERSION PROGRAMMING. {18) The independent coding of a number, N, of redundant
computer programs that are run concurrently for the purpose of comparing their

outputs.

NANOSECOND. {16} One-billionth of a second.

NEGATIVELY STABILIZED. (4) Aircraft design in which the point of effective 1lift
is aft of the center of gravity.

NEMATIC. {19) A liquid crystal phase with molecules having a single optical axis
in line with an applied magnetic field. '

NETWORK_CONTROL STRATEGY. (6) The solution proposed by the designer in address-—
ing his specific problem (design flexibility).

NEURAL NETWORK. (20) A system modelled after the brain, used to solve problems
by a mapping of input data to output data.

NEURO-FUZZY. (20) Integrating a Neural Network and fuzzy logic to solve
problems.

NEURON. (20) The computational element in a Neural Network. A neuron computes
the weighted sum of the inputs from other neurons and produces an output.

NODE. (20} 1. Representation of an object that is related to other objects via
connection weights. 2. The part of a Neural Network that calculates and
processes information.

NOISE. (11) Conducted or radiated emission causing circuit upset, performance
disorder, or undesired sound.

NOISE. (20} Meaningless or erroneous bits that must be ignored or removed from
a signal, especially in communication channels.

NON REAL-TIME LEARNING. {20} Learning done in a Neural Network before attempting
to solve application problems.

NONLINEARITY. {20) A system in which the outputs do not correspond to the inputs
in a direct or inversely proportional relationship.

NUMERICAL APERTURE. (6) The angle of acceptance of light from a light source for
a given fiber optic cable.

OBJECT CODE. {17} The translation of source code that is loaded into a computer. .

22

OBJECT—ORIENTED. ({20} A representation form for knowledge in which all
properties of an object are associated by the outgoing and incoming arcs at its
node; the representation is geared towards manipulating objects as independent
pieces of knowledge.

OBSERVER. {7} An algorithm which models physical relationships between sensor
data and uses the data to provide fault detection for one or more sensors. This
is also known as a Luenberger observer or a signal blender.

OPERANDS. {17) The variables or constants on which the operators act.
OPERATORS. {17) Symbols which affect the value or ordering of operands.

OPPORTUNISTIC REASONING. (20) The process of solving problems in a way that is
not uniform or predictable. Opportunistic reasoning attempts to solve the
problem in the best possible way for each individual situation. Rules fire when
they are appropriate, without a priori ordering.

OPTIMIZING COMPILER. (17) A computer program which, while translating source
code into object code, removes inefficiencies from the code.

OUTPUT LAYER. (20) The layer of neurons in a Neural Network that takes the
outputs from the hidden layer, processes them, and then produces the output of
the network.

OVERHEAD. (18) The message timing gaps, control bits, and error detection bits
added to some data to satisfy the data bus protocol.

PARALLEL PROCESSING. (20) Performing many different calculations simultaneously
to reach one conclusion or solution.

PARAMETERIZATION CAPABILITY. {6} A measure of how well the attributes of the
protocol can be described by parameters.

PARITY. (18) An error detection bit added to a data word based on whether the
number of "one" bits is even or odd.

PARTITIONED. {18) Colocated hardware or software functions that are designed so
that adverse interactions between them cannot occur.

PEAK RATE OF RISE. (13} The maximum instantaneous slope of the waveform as it
rises to its maximum value. Mathematically, the peak rate of rise of a function,
i(t), may be expressed as the maximum of d[i(t)]/dt.

PETRI NET. (18) A state analysis diagram that tracks the status of the state
transition conditions of a state machine.

PHONEME. {19} The smallest elements of speech.

PHOTOLITHOGRAPHY. {19) An integrated circuit fabrication technique using
photographically produced masks.

23

PIN LEVEL TEST. (12) An EMC test in which voltage or current is applied directly
to a conductor at a connector pin.

PIXEL. {19} The smallest picture element of a display.
POINT-MASS SIMULATION. {4) Same as state variables airplane model (q.v.).

POLLING. (18) A method whereby a CPU monitors the status of a peripheral by
periodically reading its status signals.

POLYNOMIAL CODE. (18) A sequence of bits that represents the coefficients of
each term in a polynomial.

POSITIVELY STABILIZED AIRCRAFT. (4) Aircraft design in which the effective point
of lift is forward of the center of gravity.

PRECIPITATION STATIC (P-static). {11) Electrostatic discharge, corona, arcing,

and streamering, steady state or impulsive, causing circuit upset, receiver noise
or component damage.

PREDICATE CALCULUS. (20} A formal language of classical logic that wuses
functions and predicates to describe relations between individual entities.

PREDICATE/TRANSITION NETWORK. {4) A bipartite graph (a type of linear graph) to
model concurrency between redundant concurrent events. Basically a modified

generalized petri net.

PRIMARY STATION. (18} An intelligent HDLC protocol user, usually used to manage
the access of other bus users to the bus.

PROBABILITY. {20} A theory dealing with the uncertainty that results from random
behavior. Probability is defined over the numeric range of 0 to 1.

PROCESSING ELEMENT. {20} The part of the Neural Network where the computations
are performed.

PRODUCTION RULES. {20} A common technique for representing procedural knowledge
in an Artificial Intelligence system.

PROGRAM. {17} A detailed set of instructions for accomplishing some purpose.

PROPAGATION DELAY. {18} The time it takes an electrical signal to travel from
its source to its destination.

PROTOCOL. (18} The set of rules by which all bus users must abide to access the
bus and ensure its specified operation.

Q. (12) The quality factor of a resonant circuit which is the ratio of the
energy stored to the power dissipated per cycle.

24

UADRUPLEX ARCHITECTURE. (4) The use of four separate lanes (or channels) of
computer redundancy. Each lane can fail separately providing a fail-operational
capability for the digital flight-control system.

QUALITY MEASURE. (17) A repeatable, monotonic relationship relating measures of
objects (a set of numbers) to subjective qualities.

RADIATED EMISSION (RE). (11) Electromagnetic energy transmitted and propagated
in space usually considered as audio frequency or radio frequency noise.

RADIO FREQUENCY (RF). (11} Frequencies in the electromagnetic spectrum used for
radio communications extending from kilohertz to gigahertz.

RADIO FREQUENCY INTERFERENCE (RFI). (11} Electromagnetic interference in the
radio frequency range.

RASTER. (19) A pattern of parallel electron beam scan lines used for uniform
coverage of a CRT screen.

REAL-TIME LEARNING. {(20) Learning done in a Neural Network while solving an
application problem.

RECONFIGURATION. (6) The capacity of a system to rearrange or reconnect the
system elements or functions.

RECONFIGURATION. {18) The process of a system reassigning which hardware
performs a particular function.

RECOVERY BLOCK. {18} A block of code executed upon detection of a fault to
recover from the erroneous condition that results.

RECOVERY CACHE. {9) The location used to preserve input values until the outputs
resulting from them have been accepted.

RECURSION. (20} A technique in which an apparently circular process is used to
perform an iterative process.

REDUNDANCY MANAGEMENT. (7) The computer processing which is needed to implement
fault detection and isolation algorithms.

REFERENCE. {11} 1. Structure, for electronics, shields, power. 2. A grid of
wires, solid sheet, or foil. 3. A wire from circuit to grounding block or case.
4. A wire from circuit to structure. 5. Shield tie. 6. Earth.

REGISTER. {18) A single word of RAM located within an IC controller that is used
for transferring data and control information.

RELAXED STATIC STABILITY AIRCRAFT. (4) An aircraft whose center of gravity is
behind the wing's point of effective lift.

RELIABILITY ANALYSIS. (4) A means of determining the probability of failure in
a system. Military flight—critical systems typically are required to have

25

reliability levels of 107> to 1077, whereas civil flight-critical systems have
reliability levels of 107° or less.

REMOTE TERMINAL. (18} The BIU portion of a MIL-STD-1553 bus user.

RESONANCE. {12} Resonance occurs in an electrical circuit when the energy stored
in the inductance is equal to the energy stored in the capacitance.

RETURN. (11} 1. Structure, for power, fault, and "discrete" circuits. 2. A grid
of wires, solid sheet, or foil. 3. A wire from circuit load back to source or
to case. 4. Circuit card "ground plane," also a reference and shield.

RETURN STROKE. (13} See lightning return stroke.

REVERSION MODE. (7) The high level of redundancy in a system having different
redundancy requirements for some sensors. Critical sensors may have a high level
of redundancy while other sensors have low levels.

RING BUS. {18) A bus where users are connected only to the two adjacent users
in a continuous ring; each connected to the next and the last one connected to
the first one.

RISE-TIME. (12} The time required for a voltage pulse to reach a predefined
magnitude from a given level.

ROBUSTNESS. {9) The ability of the code to perform despite some violation of the
assumptions in its specifications usually via substitution of an alternate value
and continuation of execution if a software fault is detected.

ROLLBACK. {9) Retrying the calculation in the event that a failure is detected,
under the assumption that some external condition may have changed thereby
resolving the anomaly.

RULE~BASED. (20) An Artificial Intelligence program where knowledge 1is
represented as rules.

RULES. (20) A method of representing knowledge in the form of IF THEN
statements.

SCHEDULER. {20} A part of an inference engine that determines which knowledge
source should be activated, and in what order.

SEALANT. {11} An applied substance enclosing and protecting the integrity of a
joint, fastener, or electrical bond from moisture, contaminants, oxidation, and

acid or alkaline corrosion.

SEARCH TREE. (20) The branches of possible solutions to a problem that start
with initial information and spread out following different paths.

SECONDARY STATION. (18) A simple HDLC protocol user.

26

SELF-SUPERVISED. {20} A method of training a Neural Network without the use of
an external monitor. A feedback device that detects errors and adjusts the
connection weights accordingly is used.

SEMANTIC NETWORK. {20} A method of representing knowledge using nodes and arcs.

SENSOR. {7) An instrument which measures a particular physical parameter. The
data output may be digital or analog and is utilized by the flight computer.

SENSOR. {18,19} Any transducer that converts the measurement of a physical
quantity to an electrical signal.

SEQUENTIAL LIKELIHOOD RATIO TEST. {7) A fault detection algorithm which is based
on two hypothesized density functions of no fault or sensor fault.

SEQUENTIAL PROBABILITY RATIO TEST. {7) See sequential likelihood ratio test.

SERTAL DATA BUS. (18) A data bus capable of sending only one bit at a time, in
series.

SERVICE SPECIFICATION. (18} The specification of the service provided by a
protocol layer.

SHIELD. {11} A conductive material, opaque to electromagnetic energy, for
confining or repelling electromagnetic fields. A structure, skin panel, case,
cover, liner, foil, coating, braid, or cable-way that reduces electric and
magnetic fields into or out of circuits or prevents accidental contact with
hazardous voltages.

SHIELD EFFECTIVENESS (SE). (11} The ability of a shield to reject electro-—
magnetic fields. A measure of attenuation in field strength at a point in space
caused by the insertion of a shield between the source and the point.

SHIELDING. {12) Any metallic structure such as the aircraft fuselage or the
woven braid on a cable that provides protection against electromagnetic fields.

SIGNAL RETURN. (11} A wire conductor between a load and the signal or driving
source. Structure can be a signal and power return. Commonly, it is the low
voltage side of the closed loop energy transfer circuit.

SIMULATION. (18,19) An approximated representation of the behavior of a system
with a similar system.

SINGLE—~ENDED CIRCUIT. {11} A circuit with source and load ends grounded to case
and structure and using structure as return.

SINGLE-POINT FAIIURE. (18) A failure of a component that, by itself, causes the
failure of the system in which it is contained.

SINUSOID. {12} A wave form that follows the mathematical values of a sine
function.

27

SLOTS. (20) Subdivisions making up the frame that may contain data, procedures,
or pointers to other frames.

SMECTIC. (19) A liquid crystal phase with molecules arranged in layers.
SOFT FAILURE. (12} A failure which causes an alteration of data or missing data.

SOFTWARE. (17) Computer programs and the documentation associated with the
programs. '

SOFTWARE METRIC. (17) A measure of software objects.

SOFTWARE QUALITY FACTOR. (17) Any software attribute that contributes either
directly or indirectly, positively or negatively, toward the objectives for the
system in which the software resides.

SOFTWARE QUALITY METRIC. {17) (1) A measure that relates measures of the
software objects (the symbols) to the software qualities (quality factors). (2)
The measure of a software quality factor.

SOURCE CODE. (17) Code that can be read by people.

SPECIAL CONDITION. (18) A regulatory document that adds to, or otherwise alters,
the airworthiness standards for particular aircraft.

SPURIOUS STATE. (20) A point in a Neural Network that acts as an attractor, but
is not one of the stored patterns.

STABILITY. (20) The property of a system which remains under control and
responds in a reasonable manner to an applied input.

STATE-VARIABLE AIRPLANE MODEL (also point-mass model). {(4) Fixed aerodynamic
variables are used in the solution of the equations of motion of the model
instead of using look-up tables in which each derivative varies with airspeed,
altitude, etc. The model performance is only accurate at or near the point in
the flight envelope for which the variables are chosen.

STATIC MARGIN. (4} The degree of instability in a relaxed statically stable
airplane.

STATION. (18} Bus user.

STATIONARY BUS CONTROL. {18) Bus control that 1is continually performed by a
single bus controller, or by one of its backups.

STATUS REGISTER. (18) A register in an IC controller that holds the status of
the state of certain controller functions.

STROKE. {19) A nonuniform technique of CRT screen refresh using penlike control
of the electron beam.

28

STROUD NUMBER. {17) The total number of elementary mental discriminations that
a person makes per second.

STRUCTURAL IR VOLTAGE. (13) The portion of the induced voltage resulting from
the product of the distributed lightning current, I, flowing through the
resistance, R, of the aircraft skin or structure.

STRUCTURE. {11) Basic members, supports, spars, stanchions, housing, skin
panels, or coverings that may or may not provide conductive return paths and
shields for electrical/electronic circuits.

STUB. (18) The short length of cable used to attach a single LRU to a data bus.

SUBROUTINE. (17} A self-contained body of code which can be called by other
routines to perform a function.

SUPER-DIAGNOSTIC FILTER. {7) An algorithm which provides all the capabilities
of a diagnostic filter. Additionally, it can isolate a specific faulted sensor.
At the current time, this is the most complex technique used to implement
analytical redundancy.

SUPERVISED LEARNING. (20} A method of training a Neural Network in which an
external supervisor monitors the activities, and learning occurs on the basis of
direct comparison of the output of the network with known correct answers.

SUSCEPTIBILITY. (11) Upset behavior or characteristic response of an equipment
when subjected to specified electromagnetic energy. Identified with the point,
threshold, or onset of operation outside of performance limits. Conducted
Susceptibility (CS) applies to energy on interface conductors; Radiated
Susceptibility (RS) to radiated fields.

SWEPT STROKE. {13) A series of successive attachments due to sweeping of the
flash across the surface of the airplane by the motion of the airplane.

SYMBOLIC PROCESSING. (20} A method of processing knowledge where the
relationships among the knowledge are stored using symbolic representations;
thus, the system can deal freely with objects and not be concerned with their
composition.

SYNAPSES. (20) Pathways in a biological neuron that transmit pulses from one
neuron to another.

SYNCHRONOUS. (20} In step, or in phase, as applied to two or more circuits,
devices, or machines.

SYNCHRONOUS MESSAGES. {6) Messages transmitted at a known a priori sequence and
time or time interval.

SYSTEM EXPQSURE TIME. (4} The period during which a system may fail. This
period extends from the last verified proper functioning to the completion of the
next required performance.

29

SYSTEM FUNCTIONAL UPSET. (13} Impairment of system operation, whether permanent
or momentary (e.g., a change of digital or analog state) which may or may not
require manual reset.

SYSTEM INTEGRATOR. {18) The developer who has the responsibility to integrate
the various subsystems into a working system.

SYSTEM INTEGRITY. {6) The degree to which a system is dependable.

SYSTEM RELIABILITY. (5) The probability of performing a given function from the
some initial time, t=0, to time t.

TESTABILITY. (6) A measure of how well the protocol supports completeness of
testing and the protocol’s ability to produce repeatable or predictable results.

THRESHOLD, NOISE. {11} The lowest electromagnetic interference signal level that
produces onset of susceptibility.

THROUGHPUT. (6) The productivity of a data processing system as expressed in
computing work per minute or hour.

THYRISTORS. {16) Solid-state devices that convert alternating current to direct
current. '

TIME CONSTANT. (4) Time required to double the amplitude of the divergent real
root in the pitch axis of the aircraft model.

TOKEN PASSING PROTOCOL. {18) A protocol that limits bus access to the user that
has just received the token word.

TRADITIONAL PROGRAMMING. (20} The use of standard programming languages, as
opposed to application development languages, financial planning languages, query
languages, and report programs.

TRAINING. {20) A change in connection weight values of a Neural Network that
results in capturing information that can be recalled later.

TRANSFER FUNCTION. (20) The mathematical relationship between the output of a
control system and its input: for a linear system, it is the Laplace transform
of the output divided by the Laplace transform of the input under conditions of
zero initial-energy storage.

TRANSIENT CONTROL LEVEL. {13} The maximum allowable level of transients appear—
ing at the systems interfaces as a result of the defined external environment.

TRANSPARENCY. (20) A characteristic of knowledge in an Expert System referring
to its independence from other knowledge. There is no processing information in

the transparent knowledge.

TRANSPARENT RECOVERY. {4} Correcting a soft fault without interrupting the
system’s intended performance.

30

TRANSPORT AIRCRAFT. (19} Aircraft used in interstate, overseas, or foreign air
transportation.

TRIBOELECTRIC CHARGING. {13} Static electricity produced on a structure from the
effects of friction.

UNACCEPTABLE RESPONSE. {11} Upset, degradation of performance, or fajlure, not
designated a malfunction, but is detrimental or compromising to cost, schedule,
comfort, or workload.

UNBALANCED CONFIGURATION. (18) A bus using the HDLC protocol that connects one
primary and one or more secondary stations.

UNDESIRABLE RESPONSE. (11} Change of performance and output, not designated a
malfunction or safety hazard, that is evaluated as acceptable as is because of
minimum nuisance effects and excessive cost burdens to correct,

UNIDIRECTIONAL DATA BUS. (18} A data bus with only one user that is capable of
transmitting.

UNSUPERVISED LEARNING. (20} A method of training a Neural Network, where no
external monitor is involved; the Neural Network organizes itself by grouping and
generating its own classification of inputs.

UPSET. (11} Temporary interruption of performance that is self-correcting or
reversible by manual or automatic process.

UPSET. (12) A condition in which the state of a digital device is uninten—
tionally altered, but may be restored by automatic means or by operator
intervention.

UPSET. (13) See system functional upset.

VALIDATION. {4,11) Demonstration and authentication that a final product
operates in all modes and performs consistently and successfully under all actual
operational and environmental conditions founded upon conformance to the
applicable specifications.

VALIDATION. {18) The process of evaluating whether or not items, processes,
services, or documents accomplish their intended purpose in their operating
environment.

VERIFICATION. (4,11) Demonstration by similarity, previous in-service
experience, analysis, measurement, or operation that the performance,
characteristics, or parameters of equipment and parts demonstrate accuracy, show
the quality of being repeatable, and meet or are acceptable under applicable
specifications.

VERIFICATION. (18} The act of reviewing, inspecting, testing, checking,
auditing, or otherwise establishing and documenting whether or not items,
processes, services, or documents conform to specified requirements.

31

VERY LARGE SCALE INTEGRATION. {20) Describing Integrated Circuits with more than
1000 elements.

VOTING PROCEDURE. (8) An algorithm included in fault tolerant software which
uses the consensus recovery block method. It compares outputs of the n
independent versions and determines which outputs are correct by identifying
agreements among two or more versions.

WEIGHT MATRIX. {(20) The collection of connection weights for an entire Neural
Network.

WELL-BEHAVED FUNCTION. {17} A smooth mathematical relationship.

32

A {17)
uC

pm (6,20)
ps (18)
n {17)
ny (17)
ﬂ1* (17}
nz {17}
ny" (17)
M (6)
1/E, {17)

3-D {16)

A/C {11)

A/L (3)

AT (19)

AAES (15}

ABET (19)

ac (3,6,12,15,19)

AC {3,5,14,17,18,19,20)
ACAP (13)

ACARS (11,12)

ACES (13)

ACK (18)

ACO {18,20)
ACS (16}

ACT (11,12)
ACT (17)

AD (19)

ADC (11,12)
ADF (11,12,19}
ADI (3)

AE (6)

AE4L (5,13)
AEEC (18)

AEHP (13)
AERA {16)
AES-S (6)

AF (11,12)
AFBW (4)

AFCS (11,12)
AFFDL (7,8,13)

ACRONYMS AND ABBREVIATIONS

Language Level

micro Controller

Micrometer

Microsecond

Vocabulary of a Program

Number of Unique Operators

Minimum Number of Unique Operators

Number of Unique Operands

Number of Different Input and Output Parameters
Phase Modulation

Average number of discriminations a person is
likely to make for each bug introduced into the
code.

Three-Dimensional

Aircraft

Approach/Land

Army-NASA Aircrew/Aircraft Integration
Advanced Aircraft Electrical System
Aerospace Behavioral Engineering Technology
Alternating Current

Advisory Circular

Advanced Composite Airframe Program

ARC Communications Addressing and Reporting
System

Applied Computational Electromagnetics Society
Acknowledge

Aircraft Certification Office

Automatic Control System

Active Controls Technology

Analysis of Complexity Tool

Alerting Display

Air Data Computer

Automatic Direction Finder

Automatic Direction Indicator

Avionics Equipment

SAE Subcommittee (Lightning)

Airlines Electronic Engineering Committee
Atmospheric Electricity Hazards Protection
Automated En Route Air Traffic Control System
Aerospace and Electronic Systems Society
Audio Frequency

Augmented Fly-By-Wire

Automatic Flight Control System

Air Force Flight Dynamics Laboratory

33

AFM {16)
AFSC (18)
AFWAL (6,13)
AGARD (8,20)

AHRS (6)
AT (16,19,20)

ATAA (5,6,9,15,18,20)

AIM (18)
AIM (20)
AIR (18,19)
AIRLAB {5,18)
AK (7)

ALCM (13)
ALPA (19)
ALU (3,5,10)
AM (19)

AM (6,14)
AM (5)

AMS (19)
AMSG (5)

ANST (11,12,20)
AOA (4)

AP (18)

APU (11,12,15)
AR (7)

ARC (11,12}
ARIES (3)

ARINC (3,6,18,20)
ARP (17,18,19,20)
ARPA (20}

ARTERI ({15)

AS (19)

ASCB (6,18)
ASDS (11,12)
ASEE (5,15)
ASIC (20)
ASME (5)
ASRS (19)
ATC (19,20)
ATCRBS (11,12,14)
ATE (20)
ATF (16)

ATI (16)
ATTR (5)
AWACS (14)

Advanced Fuel Management

Air Force Systems Command

Air Force Wright Aeronautical Laboratory -
Advisory Group for Aerospace Research and
Development

Attitude Heading Reference System
Artificial Intelligence

American Institute of Aeronautics and
Astronautics

Advanced Integrated MUX

Airmen’'s Information Manual

Aerospace Information Report

Avionics Integration Research Laboratory
Altitude Kinematics

Air Launched Cruise Missile

Air Line Pilot’s Association

Arithmetic Logic Unit

Active-Matrix

Amplitude Modulation

Amplitude Modulated

Aerospace Material Specification

Document number prefix used by the Department of
Defense

American National Standards Institute
Angle of Attack

Application Processor

Auxiliary Power Unit

Analytical Redundancy

Aeronautical Radio, Incorporated
Automated Reliability Interactive Estimation
System

Aeronautical Radio, Incorporated
Aerospace Recommended Practice

Advanced Research Projects Agency (formerly
DARPA)

Analytical Redundancy Technology for Engine
Reliability Improvement

Aerospace Standard

Avionics Standard Communications Bus
Airport Surface Detection System

American Society of Electrical Engineers
Application Specific Integrated Circuit
American Society of Mechanical Engineers
Aviation Safety Reporting System

Air Traffic Control

Air Traffic Control Radar Beacon System
Automatic Test Equipment

Advanced Tactical Fighter

Access Time Interval

Attribute

Airborne Warning and Control System

34

B (17)
B—dot (13)

B-GLOSS ({5)
BABBAGE ({20)

BAC (18)

BAT (17)

BB (11,12}

BC (18)

BCAC {18)

BCD {18}

BCI (12)

BFCS (18)

BGU (10}

BIR (6)

BIT (6,15,18,20)
BITE (6,11,12,19)
BIU (6,18)

BNR {18)

BOCP (18)

BP (18)

bps (6)

BUSY (18)

. BW {11,12)

C/1 (5)

c {(7)

CA (18)

CAA (14,19)
CAD (5,19)
CALSEL {19)
CAP (5)
CAPS (3)
CARE (3,5)
CARSRA (3,7)

CAS {11,12)
CASSY (20)
CAST (3)
CBD (5)

CBI (19)
CCITT (6)

CD (6}

cdf (8)

CDhU (11,12,19,20)
CE (11,12)

CE (17,18,19,20)
CF (20)

CFR (17,19)

Number of Bugs (Estimated)

Derivative of the magnetic field with respect to
time

Gate Logic Software Simulator developed by
Bendix

Boeing Advanced BlackBoard Ada Generation
Environment

Balanced Asynchronous Configuration
Battlemap Analysis Tool

Broadband

Bus Controller

Boeing Commercial Airplane Company

Binary Coded Decimal

Bulk Cable Injection

Beacon Frame Check Sequence

Bus Guardian Unit

Benchmark Information Rate

Built—-In Test

Built-In Test Equipment

Bus Interface Unit

Binary

Bit-Oriented Communications Protocol
Basic Protocol

bits per second

Destination Busy

Bandwidth

Communicator Interstage

Comparator

Criticality Analysis

Civil Aviation Authority

Computer Aided Design

Call Select

Collins Application Processor

Computer Aided Production Simulator
Computer Aided Reliability Evaluator
Computer—Aided Redundant System Reliability
Analysis

Criticality Advisory System

Cockpit Assistant System

Complementary Analytic Simulative Technique
Commerce Business Daily

Computer Based Instruction

Consultative Committee for International
Telephone and Telegraph

Collision Detection

Cumulative Density Function

Control Display Unit

Conducted Emission

Certification Engineer

Certainty Factor

Code of Federal Regulations

35

cm {19)

CM (20}

CM (11,12)

CMC (18)

CMOS (5,12,20)
CMU (19)

CNI {20}
COMBIMAN (19)
CONUS (14)

CP (18)

CPA (5)

cPU (5,10,18,19,20)
CR {5}

CR (6}

CR/LF (17)

CRC (6,18)

CRM (19)

CRMI (2)

CRT (11,12,16,19)
¢S (11,12}

CSC (9)

cSCI (9,17)

CSDB (18)

CSDL (5,10,15)
CSERIAC (19)

CSMA (6,16,18)
CSMA/CD (6)

CT (2,6)

CTA (3)
CTA (5)
CTS (18)
CW (13)

D (17}
DADC (6)
DARPA (16}

DATAC (6,18)
dB (6,12)
dBi (14)

dBm (6}

de (6,12,15,19)
DC (18)

DE {5}

DEFN (5}

DEP (19)

DET {18}

DEV {5}

Centimeter

Configuration Management

Common Mode

Current Mode Coupler

Complimentary Metal-Oxide Semiconductor
Computer Mock-Up

Communication, Navigation, and Identification
Computerized Biomechanical Man-model
Contiguous United States

Combined Protocol

Central Processor — A

Central Processing Unit

Contractor Report

Command Response

Carriage Return/Line Feed

Cyclic Redundancy Check

Cockpit Resource Management (also Crew Resource
Management)

Computer Resource Management, Incorporated
Cathode Ray Tube

Conducted Susceptibility

Computer Software Component

Computer Software Configuration Item
Commercial Standard Data Bus

Charles Stark Draper Laboratories

Crew System Ergonomics Information Analysis
Center

Carrier Sensed Multiple Access

Carrier Sense Multiple Access/Collision
Detection

Technical Center (designation used in FAA report
numbering scheme)

CAPS Test Adapter

Collins Test Adaptor

Clear To Send

Continuous Wave

Program Difficulty

Digital Air Data Computer

Defense Advanced Research Projects Agency (Now
known as Advanced Research Projects Agency)
Digital Autonomous Terminal Access Communication
Decibel

Decibels with respect to one milliampere
Decibels with respect to one milliwatt

Direct Current

Display Computer

Diagnostic Emulation

Definition

Design Eye Position

Driver Enable Timer

Development

36

DF (7)

DFC (7)

DFCS (3,4,7,16)
DFDAU (11,12)
DFDR (11,12)

DGAC {14)

DISAC (15)

DITS (6,11,12,18)
DM (11)

DM (6)

DMA (5,6}

DMA {18)

DME (11,12,18,19)
DNA (13)

DoD (5,8,12,14,16,19,20)
DOE {13)

DOS (20)

DOT (2,3,6,7,8,20)
DR (17)

DRB (9)

DS {17)

DSP (3)

DSP (20)

-DTSA (18}

E/E (11,12)
E-FIELD (11,12)
E (17)

E-dot (13)

E? (11,12)

EADI (11,12,19)
ECAC (11,12,14)
ECM (14)

ECS (11,12}

EEC {5,11,12,18)
EED (11,12}
EEPROM (20)

EES (18)
EFID (18)

EFIS (11,12,18,19)
EFMA (3)

EFMB (3)

EFOA (3)

EFOB (3)

EFW (3)

Eg (19)

EGT (11,12)

EHSI (11,12)

EIA (18)

EICAS (11,12)

Diagnostic Filterx

Digital Flight Control

Digital Flight Control System
Digital Flight Data Acquisition Unit
Digital Flight Data Recorder
Directorate Generale Aviation Civile
Digital Integrated Servo Actuator Controller
Digital Information Transfer System
Differential Mode

Delay Modulation

Direct Memory Access

Direct Memory Addressing

Distance Measuring Equipment

Defense Nuclear Agency

Department of Defense

Department of Energy

Disk Operating System

Department of Transportation

Direct Ratio (Average)

Distributed Recovery Block

Direct Score

Discrete Switch Panel

Digital Signal Processor

Dynamic Time Slot Allocation

Electrical/Electronic

Electric Field

Programming Effort

Derivative of the electric field with respect to
time

Electromagnetic Environmental Effects
Electronic Attitude Director Indicator
Electromagnetic Compatibility Analysis Center
Electronic Counter Measures

Environmental Control System

Electronic Engine Control

Electro-Explosive Device

Electrically Erasable Programmable Read Only
Memory

Electromagnetic Emission and Susceptibility
Electronic Flight Instrument Display
Electronic Flight Instrument System
Executive Failure My A

Executive Failure My B

Executive Failure Other A

Executive Failure Other B

Executive Failure Word

Energy gap

Exhaust Gas Temperature

Electronic Horizontal Situation Indicator
Electronic Industries Association

Engine Indication and Crew Alerting System

37

EIU (16)

EL (19)

ELS (19)

EM (5,11,12,13)
EMA (15)

EMAS (2,15)

EMC (6,11,12,13,14)
EMCad®™ (12)
EME (14)

EME (11,12)

EMI (5,6,11,12,13,15,16)
EMIC (11,12)
EMP (11,12,13)
EMR (5,14)

EMUX (6)

ENRZ {6)

EOF (17)

EPES (20)

EPR (11,12,15)
EPROM (16}

ES (20)

ESD (11,12)

ESE (11,12}

ESS (5,9)

ETANN (20)

ETDL (13)
EUROCAE (14)

EVS (19)
EXCHNG ({5)
EXP {5)

F/FA {18,20)
FAA (ALL)

FADEC (6,15,16)
FAFTEEC (16)

FAR (17,18,19,20)
FAR (3,4,6,16)

FAS (19)

FBL {15,16)

FBW (4,7,16)

FCA {20}

FCC (3,4,5,6,10,11,
12,15,18,19)

FCR (5)

FCS (18)

FCS (4,5,10,16)

FD (7}

FDEP (11,12)

FDFM (15)

FDI (19}

Electronic Interface Unit
Electroluminescent

Electronic Library System
Electromagnetic

Electromechanical Actuator
Electromechanical Actuator System
Electromagnetic Compatibility
Electromagnetic Computer aided design
Electromagnetic Environment
Electromagnetic Effects
Electromagnetic Interference
Electromagnetic Interference/Compatibility
Electromagnetic Pulse

Electromagnetic Radiation

Electrical Multiplex

Enhanced Non-Return to Zero

End of File

Emergency Procedures Expert System
Engine Pressure Ratio

Erasable Programmable Read-Only Memory
Expert System

Electrostatic Discharge

Electric (field) Shield Effectiveness
Electronic Switching System
Electrically Trainable Analog Neural Network

Equipment Transient Design Level I

European Organization for Civil Aviation
Electronics

Enhanced Vision System

Exchange

Experiment

Fault and Failure Analysis

Federal Aviation Administration

Full Authority Digital Engine Controller
Full Authority Fault Tolerant Electronic Engine
Control

Federal Aviation Regulation

Federal Acquisition Regulation

Flight Deck Alerting System

Fly-By-Light

Fly-By-Wire

Fuzzy Computational Accelerator

Flight Control Computer

Fault Containment Regions

Frame Check Sequence

Flight Control System

Fault Detection

Flight Data Entry Panel

Fault Detection and Failure Management

Flight Director Indicator ‘
38

FET (5,16,19)
F1 (7)

FI (5}

FIAT (5)

FICA (15)
FIDE (20)
FIIS (5,10}
FIL (20)

FIM (5)
FINDER (20}

FIRE (5)

FLEX {20)

FM (5)

FM (6,14)

FMC (11,12,19)
FMEA (3,9,18)
FMECA ({5,15)
FMECA ({18)

FMS {19)

FOV (19)

FP (17)

FSM (18)

fr {14)

FT (5}

FTA (18)

FTIC (5)

FTMP (5,10,18)
FTP (5}

G/E (13)
gl (19)
g2 (19)
g3 (19)
g4 (19)
GA (18)

GaAs {6,16,19,20)

GaAsP (19)
GAMA (6,18)
GaP (19)
GCR {6}

GE (5)
GEMACS {13)

. GEN {5)

GGLOSS (5}
GLOSS ({5}

GNC (16}

GPC (5)

GPS (11,12}
GPWS {11,12)
Gr/Ep (11,12)

Field Effect Transistor

Fault Isolation

Fault Insertion Circuitry

Fault Injection Automated Testing

Failure Indication and Corrective Action
Fuzzy Inference Development Environment
Fault Insertion and Instrumentation System
Fuzzy Inference Language

Fault Injection Manager

Flight-Plan Interactive Negotiation and
Decision-Aiding System for Enroute Rerouting
Fault Injection Receptor

FORTRAN Library for EXpert systems

Frequency Modulated

Frequency Modulation

Flight Management Computer

Failure Mode and Effect Analysis

Failure Modes and Effects Criticality Analysis
Failure Mode, Effects, and Criticality Analysis
Flight Management System

Field of View

Function Point

Finite State Machine

feet

Fault Tolerant

Fault Tree Analysis

Fault Tree Compiler

Fault-Tolerant Multiprocessor

Fault Tolerant Processor

Graphite Epoxy

Grid 1

Grid 2

Grid 3

Grid 4

General Aviation

Gallium Arsenide

Gallium Arsenide Phosphide

General Aviation Manufacturers Association
Gallium Phosphide

Group Code Recording

General Electric

General Electromagnetic Model for the Analysis
of Complex Systems

Generation

Generalized Gate-Level Logic System Simulator
Gate Logic Software Simulator

Guidance, Navigation, and Control

General Purpose Computer
Global-Positioning—System

Ground Proximity Warning System
Graphite/Epoxy

39

GS (10)
GUI (20)

H-FIELD {11,12)
H1 (11,12)

HA (18)

HARP (5,18)
HDBK (5}

HDD {(19)

HDLC (6,18)
HERF (5,14,16,18)
HF (11,12,13,14,19)
Hg (19)

HIRF (15,18,19)
HLD {19)

HMD {19)

HMS ({19)

HOL (17,20)

HSI (3,19)

HSRB (6,18)

HUD (19}

HVDC {15}

HW {18)

Hz (3,15,18,19)

I (13)

I (17}

I-dot (13)

1/0 {5,10,15,18,20)
IAA (3)

TAAC (11,12}

IACS (18)

IBM {5)

IC (3,18,19,20)

ICAO (14)

ICIS (5}

ICS {5)

ID (5)

ID (18)

IDG {11,12)

IEEE (5,6,9,17,18,20)

Ip (19)
IETM (20)
IFC (17)
IFCS (18)
IFF (14,19}
IGGLOSS ({5)

Glideslope
Graphical User Interface

Magnetic Field

Fan Speed

Hazard Analysis

Hybrid Automated Reliability Predictor
Handbook

Head-Down Display

High-Level Data Link Control
High-Energy Radio Frequency
High-Frequency

Mercury

High-Intensity Radiated Fields
Head-Level Display

Helmet Mounted Displays

Helmet Mounted Sight

High Order Language

Horizontal Situation Indicator
High-Speed Ring Bus

Head-Up Display

High Voltage dc

Hardware

Hertz

Current

Intelligence Content

Derivative of the current with respect to time
Input/Output

Integrated Assurance Assessment

Integrated Application of Active Controls
Technology (to an Advanced Subsonic Transport
Project)

Integrated Avionic Computer System
International Business Machines

Integrated Circuit

International Civil Aviation Organization
Intercomputer Interface Sequencer
Intercomputer Sequencer

Identification

Identifier

Integrated Drive Generator

Institute of Electrical and Electronics
Engineers, Incorporated

Forward Current

Interactive Electronic Technical Manual
Information Flow Complexity :
Information Frame Check Sequence
Identification — Friend or Foe

Gate Logic Software Simulator (improved version
developed at NASA Langley)

40

IJCNN (20}

ILS {3,11,12,19)
IMR {18)

INS (6,11,12,19)
I0OPA (5)

I0S {5)

IR {19)

IRS (11,12,19)
IS0 {17,18)

ITO (19)

ITS (19)

ITT (16)

IV&V (9,20)
IVT (18)

JPL (5)

k (6,20)

kA (13,16)

KBAP {20}

kHz (5,6,12,14,19)
km (6)

L (17)

L {(17)

LAN (5}

LaRC (5)

LC (19)

LCC (11,12)
LCD (16}

LCS (19)

LED (6,19,20)
LF (13)

LISP {20}

L0C (11,12)
LOFT (19}

LPN {13)

LRC (6}

LRRA (11,12,19)
LRU (5,6,11,12,13,18,19)
LSB (6,18}
LSI (5,18,19)
LTPB {6,18)
LTRI (13)
LVDT (15)
LVDT (3}

m (18}
m (6}
M (6)

International Joint Conference on Neural
Networks

Instrument Landing System

Interrupt Mask Register

Inertial Navigation System

Input/Output Processor — Channel A
Input/Output Subsystem

Infrared

Inertial Reference System

International Standards Organization
Indium Tin Oxide

Intelligent Tutoring System
(Consultative Committee for) International
Telegraphy and Telephony

Independent Verification and Validation
Interrupt Vector Table

Jet Propulsion Laboratories

Thousand
Kiloampere

Knowledge—Based AutoPilot

Kilohertz
kilometer

Estimated Program Level

Program Level

Local Area Network

Langley Research Center

Liquid Crystal

Life Cycle Cost

Liquid Crystal Display

Liquid Crystal Shutter

Light Emitting Diode

Low Frequency

LISt Processor

Localizer

Line Oriented Flight Training

Lumped Parameter Network

Longitudinal Redundancy Check

Low Range Radio Altimeter

Line Replaceable Unit

Least Significant Bit

Large Scale Integration

Linear Token Passing Bus

Lightning and Transients Research Institute
Linear Variable Differential Transformers
Linear Voltage Differential Transducer

Original Address of Last Transmission
meter

Million

41

M (5}

mA {3)
MAADS (6)
MAC (4)
MAFT {16)
Mbps {6,16)
MC {18)
MCDP (11,12}
MCDU (19)
MCFCS (18}
MCP (11,12)
MDICU (4,5)
MDICU (3}
MDT (6}

MEP (20}
MFCS (18}
Mflops (16}
MFM (6}
MFR {10}

MHz {5,6,12,14,18,20)

mil (11,12)
MIL (5)
MIL-HDBK {18}
MIL-STD (6,18}
MKR (19)

ML (18)

MLE (8)

MLS (11,12,19)
mm (19,20}
Mn (19}

MOS (5)

MPP (16}

MPSC {18)
MPX (5}

ms (6,10,18)
MSB (6,18)
MSE (11,12}
MSI (5)

MT (18)

MTBCF (6)
MTBF (9,18)
MTTF (8,10)
MTTR (6,18)
Mux (5)

MUX (4,18)

N {17}
n {18)
N (18)
N (17)
N, {15)
N, {17)

Mutual (when used with RLC)

Milliampere

Multibus Avionic Architecture Design Study
Mean Aerodynamic Chord

Multicomputer Architecture for Fault Tolerance
Million bytes per second

Mode Code

Maintenance Control and Display Panel
Multi-Purpose Control Display Unit
Message Control Frame Check Sequence

Mode Control Panel

Modular Digital Interface Conversion Unit
Modular Digital Interface Control Unit

Mean Down Time

Mission Equipment Package

Message Frame Check Sequence

Million floating—point operations per second
Modified-Frequency Modulation

Mean Failure Rate

Megahertz

One thousandths of an inch (0.001)

Military

Military Handbook
Military Standard

Markers
Message Length

Maximum Likelihood Estimates
Microwave Landing System

Millimeter
Manganese

Metal—-Oxide Semiconductor
Massively Parallel Processor
Multi-Protocol Serial Controller

Multiplex
Millisecond

Most Significant Bit
Magnetic (Field) Shielding Effectiveness
Medium Scale Integration

Message Time

Mean Time Between Critical Failures
Mean Time Between Failures

Mean Time to Failure

Mean Time To Repair

Multiplexed
Multiplexer

Estimated Length

Address of User Performing Computation
Maximum Number of Users

Implementation Length of a Program

Low Rotor Speed

Total Number of Operator Occurrences

42

. .

N (17)
N, {15)

N2 (11,12)
N, (17)
N, (17)
NA {6)

NA (3).
NADC (6,7)
Naecon (5)
NAECON (6)
NAND (5}
NAS {19}
NASA (2,3,5,7,13,15,18,19,20)
NASC (13)
NATO (14}
NB (11,12}
NCTS (18)
ND (19)
NEC (13}
NEMP (5,12)
NHPP (8)
nmi {14)
NN (20)
NPRM (14}
NRZ (6)
NRZ-1 {6)
NRZ~-L (6)
nsec (6)
NSWC (13}
NTSB {19)
NVG {19)
NVS (8)

OMEGA (11,12)
OMV (16)

ONR ({20}

0s {5}

0SI (18)

0TV ({16}

P-Static (11,12}
P {10)

PA (19)
PA (20}
PAT {19)
PAL (5)
PAS (6)
PAWS (5}
PBW {15)
PC {17)
PC {5,20)
PCA {17)

Minimum Number of Operators

High Rotor Speed

Core Engine Speed

Total Number of Operand Occurrences
Minimum Number of Operands

Numerical Acceptance

Normal Accelerometers

Naval Air Development Center
National Avionics and Electronics Conference
National Aerospace and Electronics Conference
Not AND

National Airspace System

National Aeronautics and Space Administration
Naval Air Systems Command

North Atlantic Treaty Organization
Narrow Band Signal

Not Clear To Send

Navigation Display

Numerical Electromagnetics Code
Nuclear Electromagnetic Pulse
Non-Homogeneous Poisson Process
nautical mile

Neural Network

Notice of Proposed Rulemaking
Non-return to Zero

Non-return to Zero Inverted
Non-return to Zero Dual Level
Nanosecond

Naval Surface Weapons Center
National Transportation Safety Board
Night Vision Goggles

N-version Software

Very Low Frequency Navigation
Orbital Maneuvering Vehicle
Office of Naval Research
Operating System

Open Systems Interconnection
Orbital Transfer Vehicle

Precipitation Static

Processor

Public Address

Pilot’s Associate

Primary Attitude Instrument
Programmable Array Logic

Pilot Assist System

Padé Approximation With Scaling
Power-By-Wire

Processing Complexity

Personal Computer

Processing Complexity Adjustment

43

PCS (16) Primary Control System

PCU (11,12} Power Control Unit

pdf (8) Probability Density Function

PE {6) Phase Encoding

PE (20) Processing Element

pf (12} picofarad

PFD (19) Primary Flight Display

PGA (20) pin grid array

PLA (15) Power Level Actuator

PLA (16} Power Level Angle

PMA (18) Parts Manufacturer Approval

PMA (20) Portable Maintenance Aid

PMS (5) : Physical Message Switch

PNF (19) Pilot Not Flying

PNI (19) Primary Navigation Instrument

PRF {11,12) Pulse Repetition Frequency

PROC (5) Processor

PROLOG (20) PROgramming in LOGic

PROM ({3,10,17,18) Programmable Read-Only Memory

psi (15) pounds per square inch

PVI (16,19} Pilot—Vehicle Interface

PWM (11,12) Pulse Width Modulation

PZ {15) Piezoelectric

QUAD (5) Quadruple

R {13) Resistance

R-C ({12) Resistor—Capacitor

RADC (8,17} Rome Air Development Center

RAE (13) Royal Aircraft Establishment

RAE ({20} Royal Aerospace Establishment

RAM (3,5,10,16,17,18) Random Access Memory

RAT (6,18) Ring Admittance Timer

RB (8) Recovery Block

RBDCP (3} Reliability Block Diagram Computer Program

RCA (16) Radio Corporation of America

RCP (19) Reconfigurable Cockpit

RCVR {5} Receiver

RDFCS (3) Redundant Digital Flight Control System

RDFCS (4} Reconfigurable Digital Flight Control System
(facility)

RDFCS (5} - Reconfigurable Digital Flight Control System

RDMI (11,12 Radio Distance Magnetic Indicator

RE (11,12} Radiated Emission

REG (5) Register

REL (3) Reliability

REL COMP {3) Reliability Computers

RF (5,11,12,13,14,16,18) Radio Frequency

RFI (11,12) Radio Frequency Interference

RIM (18) Ring Interface Module

RISC ({20) Reduced Instruction Set Computer

RIU {18) Ring Interface Unit

44

RL (13,15)

Ry (19)

RLC (5,13}

RLCM (13)

RM (7)

RNRZ {6}

ROM (5,10,19)

RPA {20}

RPV {16}

RR {18}

RRT (18)

RS {18}

RS (11,12)

RSS (4,7)

RT (5,18}

RTCA (2,3,11,12,14,
16,17,18,20)

RTE (18)
RTI (5)

RTS (18)
RZ (6)

S (17)

s/a (11,12)

S—a—-0 (5,10)
S—-a-1 (5,10)
S—GLOSS (5)

SAE (2,5,6,13,14,16,
17,18,19,20)

SAI (18)
SAS (4,7)
SATCOM (19)
SATNAV (19)
SC (18)

SC (20)

SCC (18)
SCM (18)
SCP (18)

SD (19)

SDF (7)

SE (11,12}
SELCAL (19)
SEU (5)

SG {18)

SHF {11,12)
SHRD ({5)
SIAM (15)

Resistance/Inductance (Out of order in c.15)
Load Resistor
Resistance/Inductance/Capacitance
Resistance/Inductance/Capacitance/Mutual
Redundancy Management

Randomized Non—-return to Zero

Read Only Memory

Rotorcraft Pilot’s Associate

Remotely Piloted Vehicle

Read Register

Ring Rotation Time

Recommended Standard

Radiated Susceptibility

Relaxed Static Stability

Remote Terminal

Radio Technical Commission for Aeronautics (now

known as Requirements and Technical Concepts for

Aviation)

Real-Time Executive
Remote Terminal Interface
Request To Send

Return to Zero

Stroud Number

Spectrum Analyzer

Stuck at Zero

Stuck at One

Gate Logic Software Simulator developed by
Stevens

Society of Automotive Engineers (now known as
Engineering Society for Advanced Mobility Land
Sea Air and Space)

Systems Architecture and Interfaces

Stability Augmentation System

Satellite Communications

Satellite Navigation

Special Condition

Special Committee

System Configuration Controller

Software Configuration Management
Self-Checking Pair

System Display

Super-Diagnostic Filter

Shielding Effectiveness

Select Call

Single Event Upset

Synchronization Gap

Super High-Frequency

Shared

Society for Industrial and Applied Mathematics

45

SIF (14) Selective Identification Facility

SIM (18) : Serial Interface Module

SIR (18) Shared Interface RAM

SLRT {7) : Sequential Likelihood Ratio Test

SMF (18) © Self Monitor Function

SMOTEC (14) Special Missions Operation Test and Evaluation
Center

SO (17) Second Order (Average)

SOoP (19) Standard Operating Procedure

SPRT (7) Sequential Probability Ratio Test

SQA ({18) Software Quality Assurance

SQF (17) Software Quality Factor

SQL {5) Software Query Language

SQM (17) Software Quality Metrics

SQPP (17) Software Quality Program Plan

SRS (17) Software Requirement Specification

SSA (18) System Safety Assessment

SSI (5) Small Scale Integration

SSP (3) Servo Simulation Panel

SSPC {15) Solid-State Power Controller

SSS {17) System/Segment Specification

STANAG {14) Standardization Agreement (NATO)

STC (2} Supplemental Type Certification

STC {18,20) Supplemental Type Certificate

STEM (5) - Scaled Taylor Expansion Matrix

STN (19) Supertwisted Nematic

STOL (16) Short Takeoff and Landing

str {6) string

SURE (5) Semi-Markov Unreliability Range Evaluator

SW {18) Software

SYN (5) Synch

T (17) Estimated Programming Time

T/R (6) Transmitter/Receiver

TACAN (14,19) Tactical Air Navigation

TASRA (3) Tree Aided System Reliability Analysis

Tc {18) Count Duration

TC (2) Type Certification

TC {18,20) Type Certificate

TCAP (13) Threshold Circuit Analysis Program

TCAS (11,12,16,18) Traffic Alert and Collision Avoidance System

TCL (13) Transient Control Level

TDM (6} Time Division Multiplex

TDMA {18) Time Division Multiple Access

T (18) Frame Time

TEAMS (20} Technical Expert Aircraft Maintenance System

TFCS (18) Token Frame Check Sequence

TFEDF (18) Token Frame Ending Delimiter Field

TFEL (19) Thin-Film Electroluminescence

TFT {19) Thin-Film Transistor

TG (18) Terminal Gap

THT (6,18) Token-Holding Timer

46

TI (18)

TLA (11,12)

Ty (18)

TMC (11,12)
TMR (10)

TN {19)

TRT (18)

TRU (15)

TSDF (18)

TSO (18,19,20)

TTL {5,11,12,13,16,19,20)

TV (14)
TWTD {13)
TX {5)

U.K. (13,14)
U.s. (14)
UAC (18)
UART (15)
UHF (11,12,13,14,19)
UNC (18)
UNIBUS {5)
UPS (15)
USAF (16,20)
USB (16)
USEG (5)
UUT (20)

uv (19)

vV (17}

vV (19)

V/m (14)

V' (17)

V&V (18,20)

Vg (19)

Vee (19)

Ve (19)

VFD (19)

VHF (11,12,13,14,19)
VHSIC (6,16)

VLF (11,12,19)

VLSI (5,6,14,18,20)
VLSIC (6,16)

VOR (11,12,14,18,19)
VORTA/VHF (11,12)
VRC (6)

Vs (19)

VSI (11,12)

VSV (15)

VT (18)

VTOL (16)

Transmit Interval

Thrust Lever Angle

Wait Time for User

Thrust Management Computer
Triple Modular Redundant
Twisted Nematic

Token Rotation Timer
Transformer Rectifier Unit
Token Starting Delimiter Field
Technical Standard Order
Transistor-Transistor Logic
Television

Thin Wire Time Domain
Transmit

United Kingdom

United States

Unbalanced Asynchronous Configuration
Universal Asynchronous Receiver Transmitter
Ultra High-Frequency

Unbalanced Normal Configuration
Universal Bus

Uninterruptible Power Supplies

United States Air Force

Upper Surface Blowing

Unsegmented

Unit Under Test

Ultra-Violet

Volume

Volt

Volt/meter

Potential Volume

Verification and Validation
Breakdown voltage

Collector Circuit Voltage

Forward Voltage

Vacuum Florescent Display

Very High-Frequency
Very-High-Speed Integrated Circuits
Very Low-Frequency

Very Large Scale Integration

Very Large Scale Integrated Circuits
VHF Omnidirectional Range
Omnirange/Tactical Air Navigation
Vertical Redundancy Check
Sustain-Voltage

Vertical Speed Indicator

Variable Stator Vane

Validation Testing

Vertical Takeoff and Landing

47

W/P (15)
WAL (3)
WFM (15)
WR (18)
WRU (11,12)
WSO (17)

XAB {5)
XMT (5)
XMTR (3)
XOR {5)

ZM (6)
ZnS (19)
ZnSe (19)

Fuel Flow to Burner Pressure

Warning Annunciation Indicator

Main fuel metering valve actuator sensor
Write Register

Weapons Replaceable Unit

Weighted Second Order (Average)

Transmit Compare A B
Transmit

Transmitter
Exclusive OR

Zero Modulation
Zinc Sulfide
Zinc Selenide

«U.S. GOVERNMENT PRINTING OFFICE: 1994-504-078-00146

48

